MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmul2 Structured version   Unicode version

Theorem dvdsmul2 14090
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )

Proof of Theorem dvdsmul2
StepHypRef Expression
1 zmulcl 10908 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
2 eqid 2454 . . 3  |-  ( M  x.  N )  =  ( M  x.  N
)
3 dvds0lem 14078 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  /\  ( M  x.  N )  =  ( M  x.  N ) )  ->  N  ||  ( M  x.  N )
)
42, 3mpan2 669 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  N  ||  ( M  x.  N
) )
51, 4mpd3an3 1323 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439  (class class class)co 6270    x. cmul 9486   ZZcz 10860    || cdvds 14070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-dvds 14071
This theorem is referenced by:  iddvdsexp  14091  dvdsmultr2  14105  dvdsfac  14125  dvdsexp  14126  bitsinv1lem  14175  bitsuz  14208  bitsshft  14209  bezoutlem4  14263  dvdssqim  14275  coprmdvds  14327  qredeq  14331  hashdvds  14389  phimullem  14393  4sqlem8  14547  dec2dvds  14633  lagsubg  16462  odadd2  17054  ppiublem1  23675  perfectlem2  23703  lgsdir2lem2  23797  lgsquadlem2  23828  lgsquadlem3  23829  lgsquad2lem1  23831  lgsquad2lem2  23832  2sqlem3  23839  2sqlem8  23845  clwwlkndivn  25039  dvdspw  29416  jm2.19lem2  31171  jm2.23  31177  jm2.20nn  31178  jm2.25  31180  jm2.27a  31186  lcmcllem  31443
  Copyright terms: Public domain W3C validator