MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Unicode version

Theorem dvdslelem 13573
Description: Lemma for dvdsle 13574. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1  |-  M  e.  ZZ
dvdslelem.2  |-  N  e.  NN
dvdslelem.3  |-  K  e.  ZZ
Assertion
Ref Expression
dvdslelem  |-  ( N  <  M  ->  ( K  x.  M )  =/=  N )

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6  |-  K  e.  ZZ
21zrei 10648 . . . . 5  |-  K  e.  RR
3 0re 9382 . . . . 5  |-  0  e.  RR
4 lelttric 9477 . . . . 5  |-  ( ( K  e.  RR  /\  0  e.  RR )  ->  ( K  <_  0  \/  0  <  K ) )
52, 3, 4mp2an 667 . . . 4  |-  ( K  <_  0  \/  0  <  K )
6 elnnz 10652 . . . . . . . 8  |-  ( K  e.  NN  <->  ( K  e.  ZZ  /\  0  < 
K ) )
7 elnnz1 10668 . . . . . . . 8  |-  ( K  e.  NN  <->  ( K  e.  ZZ  /\  1  <_  K ) )
86, 7bitr3i 251 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  0  <  K )  <->  ( K  e.  ZZ  /\  1  <_  K ) )
9 pm5.32 631 . . . . . . 7  |-  ( ( K  e.  ZZ  ->  ( 0  <  K  <->  1  <_  K ) )  <->  ( ( K  e.  ZZ  /\  0  <  K )  <->  ( K  e.  ZZ  /\  1  <_  K ) ) )
108, 9mpbir 209 . . . . . 6  |-  ( K  e.  ZZ  ->  (
0  <  K  <->  1  <_  K ) )
111, 10ax-mp 5 . . . . 5  |-  ( 0  <  K  <->  1  <_  K )
1211orbi2i 516 . . . 4  |-  ( ( K  <_  0  \/  0  <  K )  <->  ( K  <_  0  \/  1  <_  K ) )
135, 12mpbi 208 . . 3  |-  ( K  <_  0  \/  1  <_  K )
14 le0neg1 9843 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( K  <_  0  <->  0  <_  -u K ) )
152, 14ax-mp 5 . . . . . . . 8  |-  ( K  <_  0  <->  0  <_  -u K )
16 dvdslelem.2 . . . . . . . . . . . 12  |-  N  e.  NN
1716nngt0i 10351 . . . . . . . . . . 11  |-  0  <  N
1816nnrei 10327 . . . . . . . . . . . 12  |-  N  e.  RR
19 dvdslelem.1 . . . . . . . . . . . . 13  |-  M  e.  ZZ
2019zrei 10648 . . . . . . . . . . . 12  |-  M  e.  RR
213, 18, 20lttri 9496 . . . . . . . . . . 11  |-  ( ( 0  <  N  /\  N  <  M )  -> 
0  <  M )
2217, 21mpan 665 . . . . . . . . . 10  |-  ( N  <  M  ->  0  <  M )
233, 20ltlei 9492 . . . . . . . . . 10  |-  ( 0  <  M  ->  0  <_  M )
2422, 23syl 16 . . . . . . . . 9  |-  ( N  <  M  ->  0  <_  M )
252renegcli 9666 . . . . . . . . . 10  |-  -u K  e.  RR
2625, 20mulge0i 9883 . . . . . . . . 9  |-  ( ( 0  <_  -u K  /\  0  <_  M )  -> 
0  <_  ( -u K  x.  M ) )
2724, 26sylan2 471 . . . . . . . 8  |-  ( ( 0  <_  -u K  /\  N  <  M )  -> 
0  <_  ( -u K  x.  M ) )
2815, 27sylanb 469 . . . . . . 7  |-  ( ( K  <_  0  /\  N  <  M )  -> 
0  <_  ( -u K  x.  M ) )
2928expcom 435 . . . . . 6  |-  ( N  <  M  ->  ( K  <_  0  ->  0  <_  ( -u K  x.  M ) ) )
302, 20remulcli 9396 . . . . . . . 8  |-  ( K  x.  M )  e.  RR
31 le0neg1 9843 . . . . . . . 8  |-  ( ( K  x.  M )  e.  RR  ->  (
( K  x.  M
)  <_  0  <->  0  <_  -u ( K  x.  M
) ) )
3230, 31ax-mp 5 . . . . . . 7  |-  ( ( K  x.  M )  <_  0  <->  0  <_  -u ( K  x.  M
) )
332recni 9394 . . . . . . . . 9  |-  K  e.  CC
3420recni 9394 . . . . . . . . 9  |-  M  e.  CC
3533, 34mulneg1i 9786 . . . . . . . 8  |-  ( -u K  x.  M )  =  -u ( K  x.  M )
3635breq2i 4297 . . . . . . 7  |-  ( 0  <_  ( -u K  x.  M )  <->  0  <_  -u ( K  x.  M
) )
3732, 36bitr4i 252 . . . . . 6  |-  ( ( K  x.  M )  <_  0  <->  0  <_  (
-u K  x.  M
) )
3829, 37syl6ibr 227 . . . . 5  |-  ( N  <  M  ->  ( K  <_  0  ->  ( K  x.  M )  <_  0 ) )
3930, 3, 18lelttri 9497 . . . . . 6  |-  ( ( ( K  x.  M
)  <_  0  /\  0  <  N )  -> 
( K  x.  M
)  <  N )
4017, 39mpan2 666 . . . . 5  |-  ( ( K  x.  M )  <_  0  ->  ( K  x.  M )  <  N )
4138, 40syl6 33 . . . 4  |-  ( N  <  M  ->  ( K  <_  0  ->  ( K  x.  M )  <  N ) )
42 lemulge12 10188 . . . . . . . 8  |-  ( ( ( M  e.  RR  /\  K  e.  RR )  /\  ( 0  <_  M  /\  1  <_  K
) )  ->  M  <_  ( K  x.  M
) )
4320, 2, 42mpanl12 677 . . . . . . 7  |-  ( ( 0  <_  M  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4424, 43sylan 468 . . . . . 6  |-  ( ( N  <  M  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4544ex 434 . . . . 5  |-  ( N  <  M  ->  (
1  <_  K  ->  M  <_  ( K  x.  M ) ) )
4618, 20, 30ltletri 9498 . . . . . 6  |-  ( ( N  <  M  /\  M  <_  ( K  x.  M ) )  ->  N  <  ( K  x.  M ) )
4746ex 434 . . . . 5  |-  ( N  <  M  ->  ( M  <_  ( K  x.  M )  ->  N  <  ( K  x.  M
) ) )
4845, 47syld 44 . . . 4  |-  ( N  <  M  ->  (
1  <_  K  ->  N  <  ( K  x.  M ) ) )
4941, 48orim12d 829 . . 3  |-  ( N  <  M  ->  (
( K  <_  0  \/  1  <_  K )  ->  ( ( K  x.  M )  < 
N  \/  N  < 
( K  x.  M
) ) ) )
5013, 49mpi 17 . 2  |-  ( N  <  M  ->  (
( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) )
5130, 18lttri2i 9484 . 2  |-  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M )  <  N  \/  N  < 
( K  x.  M
) ) )
5250, 51sylibr 212 1  |-  ( N  <  M  ->  ( K  x.  M )  =/=  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    e. wcel 1761    =/= wne 2604   class class class wbr 4289  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    x. cmul 9283    < clt 9414    <_ cle 9415   -ucneg 9592   NNcn 10318   ZZcz 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-z 10643
This theorem is referenced by:  dvdsle  13574
  Copyright terms: Public domain W3C validator