MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflsumcom Unicode version

Theorem dvdsflsumcom 20926
Description: A sum commutation from  sum_ n  <_  A ,  sum_ d  ||  n ,  B (
n ,  d ) to  sum_ d  <_  A ,  sum_ m  <_  A  /  d ,  B
( n ,  d m ). (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dvdsflsumcom.1  |-  ( n  =  ( d  x.  m )  ->  B  =  C )
dvdsflsumcom.2  |-  ( ph  ->  A  e.  RR )
dvdsflsumcom.3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  B  e.  CC )
Assertion
Ref Expression
dvdsflsumcom  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
Distinct variable groups:    m, d, n, x, A    B, m    C, n    ph, d, m, n
Allowed substitution hints:    ph( x)    B( x, n, d)    C( x, m, d)

Proof of Theorem dvdsflsumcom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fzfid 11267 . . 3  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 fzfid 11267 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
3 elfznn 11036 . . . . . 6  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
43adantl 453 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
5 sgmss 20842 . . . . 5  |-  ( n  e.  NN  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
64, 5syl 16 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
7 ssfi 7288 . . . 4  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n
) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
82, 6, 7syl2anc 643 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
9 nnre 9963 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  RR )
109ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  e.  RR )
114adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  e.  NN )
1211nnred 9971 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  e.  RR )
13 dvdsflsumcom.2 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
1413ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  A  e.  RR )
15 nnz 10259 . . . . . . . . . . . . 13  |-  ( d  e.  NN  ->  d  e.  ZZ )
16 dvdsle 12850 . . . . . . . . . . . . 13  |-  ( ( d  e.  ZZ  /\  n  e.  NN )  ->  ( d  ||  n  ->  d  <_  n )
)
1715, 4, 16syl2anr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  NN )  ->  (
d  ||  n  ->  d  <_  n ) )
1817impr 603 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  <_  n )
19 fznnfl 11198 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  A ) )  <->  ( n  e.  NN  /\  n  <_  A ) ) )
2013, 19syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  A ) )  <-> 
( n  e.  NN  /\  n  <_  A )
) )
2120simplbda 608 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  <_  A )
2221adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  <_  A )
2310, 12, 14, 18, 22letrd 9183 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  <_  A )
2423ex 424 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  -> 
d  <_  A )
)
2524pm4.71rd 617 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) ) ) )
26 ancom 438 . . . . . . . . 9  |-  ( ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( ( d  e.  NN  /\  d  ||  n )  /\  d  <_  A ) )
27 an32 774 . . . . . . . . 9  |-  ( ( ( d  e.  NN  /\  d  ||  n )  /\  d  <_  A
)  <->  ( ( d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) )
2826, 27bitri 241 . . . . . . . 8  |-  ( ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( ( d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) )
2925, 28syl6bb 253 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( (
d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) ) )
30 fznnfl 11198 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
3113, 30syl 16 . . . . . . . . 9  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
3231adantr 452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
3332anbi1d 686 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n )  <->  ( (
d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) ) )
3429, 33bitr4d 248 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
3534pm5.32da 623 . . . . 5  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) ) )
36 an12 773 . . . . 5  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  ( 1 ... ( |_
`  A ) )  /\  d  ||  n
) )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
3735, 36syl6bb 253 . . . 4  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) ) )
38 breq1 4175 . . . . . 6  |-  ( x  =  d  ->  (
x  ||  n  <->  d  ||  n ) )
3938elrab 3052 . . . . 5  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  <->  ( d  e.  NN  /\  d  ||  n ) )
4039anbi2i 676 . . . 4  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  { x  e.  NN  |  x  ||  n } )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) ) )
41 breq2 4176 . . . . . 6  |-  ( x  =  n  ->  (
d  ||  x  <->  d  ||  n ) )
4241elrab 3052 . . . . 5  |-  ( n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } 
<->  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  d  ||  n
) )
4342anbi2i 676 . . . 4  |-  ( ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
4437, 40, 433bitr4g 280 . . 3  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } )  <-> 
( d  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) ) )
45 dvdsflsumcom.3 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  B  e.  CC )
461, 1, 8, 44, 45fsumcom2 12513 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } B )
47 dvdsflsumcom.1 . . . 4  |-  ( n  =  ( d  x.  m )  ->  B  =  C )
48 fzfid 11267 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
4913adantr 452 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
5031simprbda 607 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
51 eqid 2404 . . . . 5  |-  ( y  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  |->  ( d  x.  y ) )  =  ( y  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) 
|->  ( d  x.  y
) )
5249, 50, 51dvdsflf1o 20925 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( y  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) 
|->  ( d  x.  y
) ) : ( 1 ... ( |_
`  ( A  / 
d ) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
)
53 oveq2 6048 . . . . . 6  |-  ( y  =  m  ->  (
d  x.  y )  =  ( d  x.  m ) )
54 ovex 6065 . . . . . 6  |-  ( d  x.  m )  e. 
_V
5553, 51, 54fvmpt 5765 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  ( (
y  e.  ( 1 ... ( |_ `  ( A  /  d
) ) )  |->  ( d  x.  y ) ) `  m )  =  ( d  x.  m ) )
5655adantl 453 . . . 4  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
y  e.  ( 1 ... ( |_ `  ( A  /  d
) ) )  |->  ( d  x.  y ) ) `  m )  =  ( d  x.  m ) )
5744biimpar 472 . . . . . 6  |-  ( (
ph  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) )  ->  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  { x  e.  NN  |  x  ||  n } ) )
5857, 45syldan 457 . . . . 5  |-  ( (
ph  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) )  ->  B  e.  CC )
5958anassrs 630 . . . 4  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  n  e. 
{ x  e.  ( 1 ... ( |_
`  A ) )  |  d  ||  x } )  ->  B  e.  CC )
6047, 48, 52, 56, 59fsumf1o 12472 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e. 
{ x  e.  ( 1 ... ( |_
`  A ) )  |  d  ||  x } B  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
6160sumeq2dv 12452 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) )
sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
6246, 61eqtrd 2436 1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {crab 2670    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   1c1 8947    x. cmul 8951    <_ cle 9077    / cdiv 9633   NNcn 9956   ZZcz 10238   ...cfz 10999   |_cfl 11156   sum_csu 12434    || cdivides 12807
This theorem is referenced by:  dchrmusum2  21141  dchrvmasumlem1  21142  dchrvmasum2lem  21143  dchrisum0  21167  mudivsum  21177  mulogsum  21179  mulog2sumlem2  21182  vmalogdivsum2  21185  selberglem3  21194  selberg  21195  selberg34r  21218  pntsval2  21223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808
  Copyright terms: Public domain W3C validator