MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflsumcom Structured version   Unicode version

Theorem dvdsflsumcom 22413
Description: A sum commutation from  sum_ n  <_  A ,  sum_ d  ||  n ,  B (
n ,  d ) to  sum_ d  <_  A ,  sum_ m  <_  A  /  d ,  B
( n ,  d m ). (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dvdsflsumcom.1  |-  ( n  =  ( d  x.  m )  ->  B  =  C )
dvdsflsumcom.2  |-  ( ph  ->  A  e.  RR )
dvdsflsumcom.3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  B  e.  CC )
Assertion
Ref Expression
dvdsflsumcom  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
Distinct variable groups:    m, d, n, x, A    B, m    C, n    ph, d, m, n
Allowed substitution hints:    ph( x)    B( x, n, d)    C( x, m, d)

Proof of Theorem dvdsflsumcom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fzfid 11779 . . 3  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 fzfid 11779 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
3 elfznn 11465 . . . . . 6  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
43adantl 463 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
5 sgmss 22329 . . . . 5  |-  ( n  e.  NN  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
64, 5syl 16 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
7 ssfi 7521 . . . 4  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n
) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
82, 6, 7syl2anc 654 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
9 nnre 10317 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  RR )
109ad2antrl 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  e.  RR )
114adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  e.  NN )
1211nnred 10325 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  e.  RR )
13 dvdsflsumcom.2 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
1413ad2antrr 718 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  A  e.  RR )
15 nnz 10656 . . . . . . . . . . . . 13  |-  ( d  e.  NN  ->  d  e.  ZZ )
16 dvdsle 13561 . . . . . . . . . . . . 13  |-  ( ( d  e.  ZZ  /\  n  e.  NN )  ->  ( d  ||  n  ->  d  <_  n )
)
1715, 4, 16syl2anr 475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  NN )  ->  (
d  ||  n  ->  d  <_  n ) )
1817impr 614 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  <_  n )
19 fznnfl 11685 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  A ) )  <->  ( n  e.  NN  /\  n  <_  A ) ) )
2013, 19syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  A ) )  <-> 
( n  e.  NN  /\  n  <_  A )
) )
2120simplbda 619 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  <_  A )
2221adantr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  ->  n  <_  A )
2310, 12, 14, 18, 22letrd 9516 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  -> 
d  <_  A )
2423ex 434 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  -> 
d  <_  A )
)
2524pm4.71rd 628 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) ) ) )
26 ancom 448 . . . . . . . . 9  |-  ( ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( ( d  e.  NN  /\  d  ||  n )  /\  d  <_  A ) )
27 an32 789 . . . . . . . . 9  |-  ( ( ( d  e.  NN  /\  d  ||  n )  /\  d  <_  A
)  <->  ( ( d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) )
2826, 27bitri 249 . . . . . . . 8  |-  ( ( d  <_  A  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( ( d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) )
2925, 28syl6bb 261 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( (
d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) ) )
30 fznnfl 11685 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
3113, 30syl 16 . . . . . . . . 9  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
3231adantr 462 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
3332anbi1d 697 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n )  <->  ( (
d  e.  NN  /\  d  <_  A )  /\  d  ||  n ) ) )
3429, 33bitr4d 256 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
d  e.  NN  /\  d  ||  n )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
3534pm5.32da 634 . . . . 5  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) ) )
36 an12 788 . . . . 5  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  ( 1 ... ( |_
`  A ) )  /\  d  ||  n
) )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
3735, 36syl6bb 261 . . . 4  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) ) )
38 breq1 4283 . . . . . 6  |-  ( x  =  d  ->  (
x  ||  n  <->  d  ||  n ) )
3938elrab 3106 . . . . 5  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  <->  ( d  e.  NN  /\  d  ||  n ) )
4039anbi2i 687 . . . 4  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  { x  e.  NN  |  x  ||  n } )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( d  e.  NN  /\  d  ||  n ) ) )
41 breq2 4284 . . . . . 6  |-  ( x  =  n  ->  (
d  ||  x  <->  d  ||  n ) )
4241elrab 3106 . . . . 5  |-  ( n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } 
<->  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  d  ||  n
) )
4342anbi2i 687 . . . 4  |-  ( ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } )  <->  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  ||  n
) ) )
4437, 40, 433bitr4g 288 . . 3  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } )  <-> 
( d  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) ) )
45 dvdsflsumcom.3 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  B  e.  CC )
461, 1, 8, 44, 45fsumcom2 13225 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } B )
47 dvdsflsumcom.1 . . . 4  |-  ( n  =  ( d  x.  m )  ->  B  =  C )
48 fzfid 11779 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
4913adantr 462 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
5031simprbda 618 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
51 eqid 2433 . . . . 5  |-  ( y  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  |->  ( d  x.  y ) )  =  ( y  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) 
|->  ( d  x.  y
) )
5249, 50, 51dvdsflf1o 22412 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( y  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) 
|->  ( d  x.  y
) ) : ( 1 ... ( |_
`  ( A  / 
d ) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
)
53 oveq2 6088 . . . . . 6  |-  ( y  =  m  ->  (
d  x.  y )  =  ( d  x.  m ) )
54 ovex 6105 . . . . . 6  |-  ( d  x.  m )  e. 
_V
5553, 51, 54fvmpt 5762 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  ( (
y  e.  ( 1 ... ( |_ `  ( A  /  d
) ) )  |->  ( d  x.  y ) ) `  m )  =  ( d  x.  m ) )
5655adantl 463 . . . 4  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
y  e.  ( 1 ... ( |_ `  ( A  /  d
) ) )  |->  ( d  x.  y ) ) `  m )  =  ( d  x.  m ) )
5744biimpar 482 . . . . . 6  |-  ( (
ph  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) )  ->  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  { x  e.  NN  |  x  ||  n } ) )
5857, 45syldan 467 . . . . 5  |-  ( (
ph  /\  ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x }
) )  ->  B  e.  CC )
5958anassrs 641 . . . 4  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  n  e. 
{ x  e.  ( 1 ... ( |_
`  A ) )  |  d  ||  x } )  ->  B  e.  CC )
6047, 48, 52, 56, 59fsumf1o 13184 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e. 
{ x  e.  ( 1 ... ( |_
`  A ) )  |  d  ||  x } B  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
6160sumeq2dv 13164 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) )
sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  d  ||  x } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
6246, 61eqtrd 2465 1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } B  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   {crab 2709    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   ` cfv 5406  (class class class)co 6080   Fincfn 7298   CCcc 9268   RRcr 9269   1c1 9271    x. cmul 9275    <_ cle 9407    / cdiv 9981   NNcn 10310   ZZcz 10634   ...cfz 11424   |_cfl 11624   sum_csu 13147    || cdivides 13518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-dvds 13519
This theorem is referenced by:  dchrmusum2  22628  dchrvmasumlem1  22629  dchrvmasum2lem  22630  dchrisum0  22654  mudivsum  22664  mulogsum  22666  mulog2sumlem2  22669  vmalogdivsum2  22672  selberglem3  22681  selberg  22682  selberg34r  22705  pntsval2  22710
  Copyright terms: Public domain W3C validator