MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflip Structured version   Unicode version

Theorem dvdsflip 23659
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a  |-  A  =  { x  e.  NN  |  x  ||  N }
dvdsflip.f  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
Assertion
Ref Expression
dvdsflip  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Distinct variable groups:    y, A    x, y, N
Allowed substitution hints:    A( x)    F( x, y)

Proof of Theorem dvdsflip
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
2 dvdsflip.a . . . . 5  |-  A  =  { x  e.  NN  |  x  ||  N }
32eleq2i 2532 . . . 4  |-  ( y  e.  A  <->  y  e.  { x  e.  NN  |  x  ||  N } )
4 dvdsdivcl 23658 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e. 
{ x  e.  NN  |  x  ||  N }
)
53, 4sylan2b 473 . . 3  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  { x  e.  NN  |  x  ||  N } )
65, 2syl6eleqr 2553 . 2  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  A )
72eleq2i 2532 . . . 4  |-  ( z  e.  A  <->  z  e.  { x  e.  NN  |  x  ||  N } )
8 dvdsdivcl 23658 . . . 4  |-  ( ( N  e.  NN  /\  z  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  z )  e. 
{ x  e.  NN  |  x  ||  N }
)
97, 8sylan2b 473 . . 3  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  { x  e.  NN  |  x  ||  N } )
109, 2syl6eleqr 2553 . 2  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  A )
11 ssrab2 3571 . . . . . . 7  |-  { x  e.  NN  |  x  ||  N }  C_  NN
122, 11eqsstri 3519 . . . . . 6  |-  A  C_  NN
1312sseli 3485 . . . . 5  |-  ( y  e.  A  ->  y  e.  NN )
1412sseli 3485 . . . . 5  |-  ( z  e.  A  ->  z  e.  NN )
1513, 14anim12i 564 . . . 4  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y  e.  NN  /\  z  e.  NN ) )
16 nncn 10539 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1716adantr 463 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  N  e.  CC )
18 nncn 10539 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
1918ad2antrl 725 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  CC )
20 nncn 10539 . . . . . . 7  |-  ( z  e.  NN  ->  z  e.  CC )
2120ad2antll 726 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  CC )
22 nnne0 10564 . . . . . . 7  |-  ( z  e.  NN  ->  z  =/=  0 )
2322ad2antll 726 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  =/=  0 )
2417, 19, 21, 23divmul3d 10350 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  N  =  (
y  x.  z ) ) )
25 nnne0 10564 . . . . . . 7  |-  ( y  e.  NN  ->  y  =/=  0 )
2625ad2antrl 725 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  =/=  0 )
2717, 21, 19, 26divmul2d 10349 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  y )  =  z  <->  N  =  (
y  x.  z ) ) )
2824, 27bitr4d 256 . . . 4  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  ( N  / 
y )  =  z ) )
2915, 28sylan2 472 . . 3  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( N  /  z
)  =  y  <->  ( N  /  y )  =  z ) )
30 eqcom 2463 . . 3  |-  ( y  =  ( N  / 
z )  <->  ( N  /  z )  =  y )
31 eqcom 2463 . . 3  |-  ( z  =  ( N  / 
y )  <->  ( N  /  y )  =  z )
3229, 30, 313bitr4g 288 . 2  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y  =  ( N  /  z )  <->  z  =  ( N  /  y
) ) )
331, 6, 10, 32f1o2d 6500 1  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   {crab 2808   class class class wbr 4439    |-> cmpt 4497   -1-1-onto->wf1o 5569  (class class class)co 6270   CCcc 9479   0cc0 9481    x. cmul 9486    / cdiv 10202   NNcn 10531    || cdvds 14073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-z 10861  df-dvds 14074
This theorem is referenced by:  fsumdvdscom  23662  phisum  31403
  Copyright terms: Public domain W3C validator