MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsfac Structured version   Unicode version

Theorem dvdsfac 13709
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )

Proof of Theorem dvdsfac
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5802 . . . . 5  |-  ( x  =  K  ->  ( ! `  x )  =  ( ! `  K ) )
21breq2d 4415 . . . 4  |-  ( x  =  K  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  K )
) )
32imbi2d 316 . . 3  |-  ( x  =  K  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 K ) ) ) )
4 fveq2 5802 . . . . 5  |-  ( x  =  y  ->  ( ! `  x )  =  ( ! `  y ) )
54breq2d 4415 . . . 4  |-  ( x  =  y  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  y )
) )
65imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 y ) ) ) )
7 fveq2 5802 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ! `  x )  =  ( ! `  ( y  +  1 ) ) )
87breq2d 4415 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  ( y  +  1 ) ) ) )
98imbi2d 316 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
10 fveq2 5802 . . . . 5  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1110breq2d 4415 . . . 4  |-  ( x  =  N  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  N )
) )
1211imbi2d 316 . . 3  |-  ( x  =  N  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 N ) ) ) )
13 nnm1nn0 10735 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
14 faccl 12181 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1513, 14syl 16 . . . . . . 7  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1615nnzd 10860 . . . . . 6  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  ZZ )
17 nnz 10782 . . . . . 6  |-  ( K  e.  NN  ->  K  e.  ZZ )
18 dvdsmul2 13676 . . . . . 6  |-  ( ( ( ! `  ( K  -  1 ) )  e.  ZZ  /\  K  e.  ZZ )  ->  K  ||  ( ( ! `  ( K  -  1 ) )  x.  K ) )
1916, 17, 18syl2anc 661 . . . . 5  |-  ( K  e.  NN  ->  K  ||  ( ( ! `  ( K  -  1
) )  x.  K
) )
20 facnn2 12180 . . . . 5  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
2119, 20breqtrrd 4429 . . . 4  |-  ( K  e.  NN  ->  K  ||  ( ! `  K
) )
2221a1i 11 . . 3  |-  ( K  e.  ZZ  ->  ( K  e.  NN  ->  K 
||  ( ! `  K ) ) )
2317adantl 466 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  K  e.  ZZ )
24 elnnuz 11011 . . . . . . . . . . . 12  |-  ( K  e.  NN  <->  K  e.  ( ZZ>= `  1 )
)
25 uztrn 10991 . . . . . . . . . . . 12  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  1 )
)  ->  y  e.  ( ZZ>= `  1 )
)
2624, 25sylan2b 475 . . . . . . . . . . 11  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ( ZZ>= `  1 )
)
27 elnnuz 11011 . . . . . . . . . . 11  |-  ( y  e.  NN  <->  y  e.  ( ZZ>= `  1 )
)
2826, 27sylibr 212 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN )
2928nnnn0d 10750 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN0 )
30 faccl 12181 . . . . . . . . 9  |-  ( y  e.  NN0  ->  ( ! `
 y )  e.  NN )
3129, 30syl 16 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  NN )
3231nnzd 10860 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  ZZ )
3328nnzd 10860 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ZZ )
3433peano2zd 10864 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  (
y  +  1 )  e.  ZZ )
35 dvdsmultr1 13688 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( ! `  y )  e.  ZZ  /\  (
y  +  1 )  e.  ZZ )  -> 
( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  ( y  +  1 ) ) ) )
3623, 32, 34, 35syl3anc 1219 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  (
y  +  1 ) ) ) )
37 facp1 12176 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ! `
 ( y  +  1 ) )  =  ( ( ! `  y )  x.  (
y  +  1 ) ) )
3829, 37syl 16 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  ( y  +  1 ) )  =  ( ( ! `
 y )  x.  ( y  +  1 ) ) )
3938breq2d 4415 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  ( y  +  1 ) )  <->  K  ||  (
( ! `  y
)  x.  ( y  +  1 ) ) ) )
4036, 39sylibrd 234 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ! `  (
y  +  1 ) ) ) )
4140ex 434 . . . 4  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  ( K  ||  ( ! `  y
)  ->  K  ||  ( ! `  ( y  +  1 ) ) ) ) )
4241a2d 26 . . 3  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( ( K  e.  NN  ->  K 
||  ( ! `  y ) )  -> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
433, 6, 9, 12, 22, 42uzind4 11026 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  K  ||  ( ! `  N )
) )
4443impcom 430 1  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   1c1 9397    + caddc 9399    x. cmul 9401    - cmin 9709   NNcn 10436   NN0cn0 10693   ZZcz 10760   ZZ>=cuz 10975   !cfa 12171    || cdivides 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-seq 11927  df-fac 12172  df-dvds 13657
This theorem is referenced by:  prmunb  14096  gexcl3  16210  wilth  22545  chtublem  22686
  Copyright terms: Public domain W3C validator