MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexp Structured version   Unicode version

Theorem dvdsexp 13610
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
dvdsexp  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  ( A ^ N ) )

Proof of Theorem dvdsexp
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  ZZ )
2 uznn0sub 10913 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
323ad2ant3 1011 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( N  -  M )  e.  NN0 )
4 zexpcl 11901 . . . 4  |-  ( ( A  e.  ZZ  /\  ( N  -  M
)  e.  NN0 )  ->  ( A ^ ( N  -  M )
)  e.  ZZ )
51, 3, 4syl2anc 661 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( N  -  M ) )  e.  ZZ )
6 zexpcl 11901 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  ZZ )
763adant3 1008 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  ZZ )
8 dvdsmul2 13576 . . 3  |-  ( ( ( A ^ ( N  -  M )
)  e.  ZZ  /\  ( A ^ M )  e.  ZZ )  -> 
( A ^ M
)  ||  ( ( A ^ ( N  -  M ) )  x.  ( A ^ M
) ) )
95, 7, 8syl2anc 661 . 2  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  (
( A ^ ( N  -  M )
)  x.  ( A ^ M ) ) )
101zcnd 10769 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
11 simp2 989 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  NN0 )
1210, 11, 3expaddd 12031 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( N  -  M )  +  M ) )  =  ( ( A ^
( N  -  M
) )  x.  ( A ^ M ) ) )
13 eluzelz 10891 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1413zcnd 10769 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
15143ad2ant3 1011 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
1611nn0cnd 10659 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
1715, 16npcand 9744 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( N  -  M )  +  M )  =  N )
1817oveq2d 6128 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( N  -  M )  +  M ) )  =  ( A ^ N
) )
1912, 18eqtr3d 2477 . 2  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( A ^ ( N  -  M ) )  x.  ( A ^ M
) )  =  ( A ^ N ) )
209, 19breqtrd 4337 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  ( A ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1756   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   CCcc 9301    + caddc 9306    x. cmul 9308    - cmin 9616   NN0cn0 10600   ZZcz 10667   ZZ>=cuz 10882   ^cexp 11886    || cdivides 13556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-n0 10601  df-z 10668  df-uz 10883  df-seq 11828  df-exp 11887  df-dvds 13557
This theorem is referenced by:  bitsmod  13653  pcpremul  13931  pcdvdsb  13956  lt6abl  16392  ablfac1eu  16596  dvdsppwf1o  22548  jm2.20nn  29372
  Copyright terms: Public domain W3C validator