MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexp Structured version   Unicode version

Theorem dvdsexp 14339
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
dvdsexp  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  ( A ^ N ) )

Proof of Theorem dvdsexp
StepHypRef Expression
1 simp1 1005 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  ZZ )
2 uznn0sub 11190 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
323ad2ant3 1028 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( N  -  M )  e.  NN0 )
4 zexpcl 12284 . . . 4  |-  ( ( A  e.  ZZ  /\  ( N  -  M
)  e.  NN0 )  ->  ( A ^ ( N  -  M )
)  e.  ZZ )
51, 3, 4syl2anc 665 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( N  -  M ) )  e.  ZZ )
6 zexpcl 12284 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  ZZ )
763adant3 1025 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  ZZ )
8 dvdsmul2 14303 . . 3  |-  ( ( ( A ^ ( N  -  M )
)  e.  ZZ  /\  ( A ^ M )  e.  ZZ )  -> 
( A ^ M
)  ||  ( ( A ^ ( N  -  M ) )  x.  ( A ^ M
) ) )
95, 7, 8syl2anc 665 . 2  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  (
( A ^ ( N  -  M )
)  x.  ( A ^ M ) ) )
101zcnd 11041 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
11 simp2 1006 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  NN0 )
1210, 11, 3expaddd 12415 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( N  -  M )  +  M ) )  =  ( ( A ^
( N  -  M
) )  x.  ( A ^ M ) ) )
13 eluzelcn 11170 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
14133ad2ant3 1028 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
1511nn0cnd 10927 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
1614, 15npcand 9989 . . . 4  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( N  -  M )  +  M )  =  N )
1716oveq2d 6321 . . 3  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( N  -  M )  +  M ) )  =  ( A ^ N
) )
1812, 17eqtr3d 2472 . 2  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( ( A ^ ( N  -  M ) )  x.  ( A ^ M
) )  =  ( A ^ N ) )
199, 18breqtrd 4450 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  ||  ( A ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    e. wcel 1870   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536    + caddc 9541    x. cmul 9543    - cmin 9859   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ^cexp 12269    || cdvds 14283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-seq 12211  df-exp 12270  df-dvds 14284
This theorem is referenced by:  bitsmod  14384  pcpremul  14756  pcdvdsb  14781  lt6abl  17464  ablfac1eu  17641  dvdsppwf1o  23978  jm2.20nn  35557
  Copyright terms: Public domain W3C validator