MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdseq Structured version   Unicode version

Theorem dvdseq 13909
Description: If two integers divide each other, they must be equal, up to a difference in sign. (Contributed by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdseq  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  ||  N  /\  N  ||  M ) )  ->  M  =  N )

Proof of Theorem dvdseq
StepHypRef Expression
1 elnn0 10809 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simprl 755 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  ||  N )
3 nn0z 10899 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  ZZ )
43ad2antrr 725 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  e.  ZZ )
5 simplr 754 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  N  e.  NN )
6 dvdsle 13907 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N )
)
74, 5, 6syl2anc 661 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( M  ||  N  ->  M  <_  N ) )
82, 7mpd 15 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  <_  N )
9 simprr 756 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  N  ||  M )
10 nnz 10898 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
1110ad2antlr 726 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  N  e.  ZZ )
12 nnne0 10580 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  =/=  0 )
1312ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  N  =/=  0 )
14 breq1 4456 . . . . . . . . . . . . . 14  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
1514biimpcd 224 . . . . . . . . . . . . 13  |-  ( M 
||  N  ->  ( M  =  0  ->  0 
||  N ) )
1615ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( M  =  0  ->  0 
||  N ) )
17 0dvds 13882 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1811, 17syl 16 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  (
0  ||  N  <->  N  = 
0 ) )
1916, 18sylibd 214 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( M  =  0  ->  N  =  0 ) )
2019necon3ad 2677 . . . . . . . . . 10  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( N  =/=  0  ->  -.  M  =  0 ) )
2113, 20mpd 15 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  -.  M  =  0 )
22 simpll 753 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  e.  NN0 )
23 elnn0 10809 . . . . . . . . . . 11  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2422, 23sylib 196 . . . . . . . . . 10  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( M  e.  NN  \/  M  =  0 ) )
2524ord 377 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( -.  M  e.  NN  ->  M  =  0 ) )
2621, 25mt3d 125 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  e.  NN )
27 dvdsle 13907 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  ||  M  ->  N  <_  M )
)
2811, 26, 27syl2anc 661 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( N  ||  M  ->  N  <_  M ) )
299, 28mpd 15 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  N  <_  M )
30 nn0re 10816 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  RR )
31 nnre 10555 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
32 letri3 9682 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
3330, 31, 32syl2an 477 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
3433adantr 465 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  ( M  =  N  <->  ( M  <_  N  /\  N  <_  M ) ) )
358, 29, 34mpbir2and 920 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( M  ||  N  /\  N  ||  M
) )  ->  M  =  N )
3635ex 434 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( ( M  ||  N  /\  N  ||  M
)  ->  M  =  N ) )
37 simpr 461 . . . . 5  |-  ( ( M  ||  N  /\  N  ||  M )  ->  N  ||  M )
38 breq1 4456 . . . . . . 7  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
39 0dvds 13882 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
403, 39syl 16 . . . . . . 7  |-  ( M  e.  NN0  ->  ( 0 
||  M  <->  M  = 
0 ) )
4138, 40sylan9bbr 700 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  =  0 )  ->  ( N  ||  M 
<->  M  =  0 ) )
42 simpr 461 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  =  0 )  ->  N  =  0 )
4342eqeq2d 2481 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  =  0 )  ->  ( M  =  N  <->  M  =  0
) )
4441, 43bitr4d 256 . . . . 5  |-  ( ( M  e.  NN0  /\  N  =  0 )  ->  ( N  ||  M 
<->  M  =  N ) )
4537, 44syl5ib 219 . . . 4  |-  ( ( M  e.  NN0  /\  N  =  0 )  ->  ( ( M 
||  N  /\  N  ||  M )  ->  M  =  N ) )
4636, 45jaodan 783 . . 3  |-  ( ( M  e.  NN0  /\  ( N  e.  NN  \/  N  =  0
) )  ->  (
( M  ||  N  /\  N  ||  M )  ->  M  =  N ) )
471, 46sylan2b 475 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  ||  N  /\  N  ||  M
)  ->  M  =  N ) )
4847imp 429 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  ||  N  /\  N  ||  M ) )  ->  M  =  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   RRcr 9503   0cc0 9504    <_ cle 9641   NNcn 10548   NN0cn0 10807   ZZcz 10876    || cdivides 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-dvds 13865
This theorem is referenced by:  dvds1  13910  dvdsext  13913  mulgcd  14060  rpmulgcd2  14122  isprm6  14126  pc11  14279  pcprmpw2  14281  odeq  16447  odadd  16729  gexexlem  16731  lt6abl  16770  cyggex2  16772  ablfacrp2  16990  ablfac1c  16994  ablfac1eu  16996  znidomb  18469  dvdsmulf1o  23336  lcmgcdeq  31140
  Copyright terms: Public domain W3C validator