MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsadd Structured version   Unicode version

Theorem dvdsadd 13879
Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdsadd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( M  +  N ) ) )

Proof of Theorem dvdsadd
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
2 zaddcl 10899 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
3 simpr 461 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
4 iddvds 13854 . . . . 5  |-  ( M  e.  ZZ  ->  M  ||  M )
54adantr 465 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
6 zcn 10865 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
7 zcn 10865 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
8 pncan 9822 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  N
)  =  M )
96, 7, 8syl2an 477 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  +  N )  -  N
)  =  M )
105, 9breqtrrd 4473 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( ( M  +  N )  -  N ) )
11 dvdssub2 13878 . . 3  |-  ( ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  N  e.  ZZ )  /\  M  ||  ( ( M  +  N )  -  N ) )  ->  ( M  ||  ( M  +  N
)  <->  M  ||  N ) )
121, 2, 3, 10, 11syl31anc 1231 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M  +  N )  <->  M 
||  N ) )
1312bicomd 201 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( M  +  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   CCcc 9486    + caddc 9491    - cmin 9801   ZZcz 10860    || cdivides 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-dvds 13844
This theorem is referenced by:  dvdsaddr  13880  dvdssub  13881  dvdssubr  13882  oddp1even  13903  dec5dvds2  14406  lgsdir2lem2  23327  acongrep  30522  acongeq  30525
  Copyright terms: Public domain W3C validator