MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2ln Structured version   Unicode version

Theorem dvds2ln 13866
Description: If an integer divides each of two other integers, it divides any linear combination of them. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )

Proof of Theorem dvds2ln
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 997 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  ZZ )
2 simpr2 998 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
31, 2jca 532 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  M  e.  ZZ ) )
4 simpr3 999 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
51, 4jca 532 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  N  e.  ZZ ) )
6 simpll 753 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  I  e.  ZZ )
76, 2zmulcld 10963 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( I  x.  M
)  e.  ZZ )
8 simplr 754 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  ZZ )
98, 4zmulcld 10963 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( J  x.  N
)  e.  ZZ )
107, 9zaddcld 10961 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ )
111, 10jca 532 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  ( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ ) )
12 zmulcl 10902 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  I  e.  ZZ )  ->  ( x  x.  I
)  e.  ZZ )
13 zmulcl 10902 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  J  e.  ZZ )  ->  ( y  x.  J
)  e.  ZZ )
1412, 13anim12i 566 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  I  e.  ZZ )  /\  ( y  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1514an4s 823 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( I  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1615expcom 435 . . . . 5  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1716adantr 465 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1817imp 429 . . 3  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  ZZ  /\  (
y  x.  J )  e.  ZZ ) )
19 zaddcl 10894 . . 3  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  +  ( y  x.  J
) )  e.  ZZ )
2018, 19syl 16 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  +  ( y  x.  J ) )  e.  ZZ )
21 zcn 10860 . . . . . . . 8  |-  ( ( x  x.  I )  e.  ZZ  ->  (
x  x.  I )  e.  CC )
22 zcn 10860 . . . . . . . 8  |-  ( ( y  x.  J )  e.  ZZ  ->  (
y  x.  J )  e.  CC )
2321, 22anim12i 566 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  e.  CC  /\  ( y  x.  J )  e.  CC ) )
2418, 23syl 16 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  CC  /\  (
y  x.  J )  e.  CC ) )
251zcnd 10958 . . . . . . 7  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  CC )
2625adantr 465 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  e.  CC )
27 adddir 9578 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  CC  /\  ( y  x.  J
)  e.  CC  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J
) )  x.  K
)  =  ( ( ( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) ) )
28273expa 1191 . . . . . 6  |-  ( ( ( ( x  x.  I )  e.  CC  /\  ( y  x.  J
)  e.  CC )  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K
)  +  ( ( y  x.  J )  x.  K ) ) )
2924, 26, 28syl2anc 661 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K )  +  ( ( y  x.  J
)  x.  K ) ) )
30 zcn 10860 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
3130adantr 465 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  CC )
3231adantl 466 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  CC )
33 zcn 10860 . . . . . . . 8  |-  ( I  e.  ZZ  ->  I  e.  CC )
3433ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  I  e.  CC )
3532, 34, 26mul32d 9780 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  x.  K )  =  ( ( x  x.  K )  x.  I
) )
36 zcn 10860 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
3736adantl 466 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  CC )
3837adantl 466 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  y  e.  CC )
398zcnd 10958 . . . . . . . 8  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  CC )
4039adantr 465 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  J  e.  CC )
4138, 40, 26mul32d 9780 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  J )  x.  K )  =  ( ( y  x.  K )  x.  J
) )
4235, 41oveq12d 6295 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) )  =  ( ( ( x  x.  K )  x.  I )  +  ( ( y  x.  K
)  x.  J ) ) )
4332, 26mulcld 9607 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  K )  e.  CC )
4443, 34mulcomd 9608 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  K )  x.  I )  =  ( I  x.  (
x  x.  K ) ) )
4538, 26mulcld 9607 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( y  x.  K )  e.  CC )
4645, 40mulcomd 9608 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  K )  x.  J )  =  ( J  x.  (
y  x.  K ) ) )
4744, 46oveq12d 6295 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  x.  I )  +  ( ( y  x.  K )  x.  J ) )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
4829, 42, 473eqtrd 2507 . . . 4  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
49 oveq2 6285 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
I  x.  ( x  x.  K ) )  =  ( I  x.  M ) )
50 oveq2 6285 . . . . 5  |-  ( ( y  x.  K )  =  N  ->  ( J  x.  ( y  x.  K ) )  =  ( J  x.  N
) )
5149, 50oveqan12d 6296 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( I  x.  ( x  x.  K ) )  +  ( J  x.  (
y  x.  K ) ) )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5248, 51sylan9eq 2523 . . 3  |-  ( ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5352ex 434 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) ) )
543, 5, 11, 20, 53dvds2lem 13848 1  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4442  (class class class)co 6277   CCcc 9481    + caddc 9486    x. cmul 9488   ZZcz 10855    || cdivides 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-dvds 13839
This theorem is referenced by:  gcdaddmlem  14016  dvdsgcd  14031
  Copyright terms: Public domain W3C validator