MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0 Structured version   Unicode version

Theorem dvds0 13856
Description: Any integer divides 0. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0  |-  ( N  e.  ZZ  ->  N  ||  0 )

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 10865 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
21mul02d 9773 . 2  |-  ( N  e.  ZZ  ->  (
0  x.  N )  =  0 )
3 0z 10871 . . 3  |-  0  e.  ZZ
4 dvds0lem 13851 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  /\  ( 0  x.  N
)  =  0 )  ->  N  ||  0
)
54ex 434 . . 3  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
63, 3, 5mp3an13 1315 . 2  |-  ( N  e.  ZZ  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
72, 6mpd 15 1  |-  ( N  e.  ZZ  ->  N  ||  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   0cc0 9488    x. cmul 9493   ZZcz 10860    || cdivides 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-ltxr 9629  df-neg 9804  df-z 10861  df-dvds 13844
This theorem is referenced by:  0dvds  13861  fsumdvds  13884  alzdvds  13891  fzo0dvdseq  13894  bitsfzo  13940  bitsmod  13941  bitsinv1lem  13946  sadadd3  13966  gcddvds  14008  gcd0id  14016  bezoutlem4  14034  dvdssq  14053  mulgcddvds  14100  odzdvds  14177  pcdvdsb  14247  pcz  14259  sylow2blem3  16438  odadd1  16647  odadd2  16648  cyggex2  16690  ppiublem2  23206  lgsdir2lem3  23328  lgsne0  23336  lgsqr  23349  eupath2lem3  24655  eupath2  24656  nn0prpw  29718  congid  30513  jm2.18  30534  jm2.19  30539  jm2.22  30541  jm2.23  30542  dvdslcm  30804  lcmdvds  30814
  Copyright terms: Public domain W3C validator