![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdemo1 | Structured version Visualization version Unicode version |
Description: Demonstration of a
theorem (scheme) that requires (meta)variables ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dvdemo1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 4594 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exnal 1699 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 213 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | pm2.21 112 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eximii 1709 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 ax-5 1758 ax-6 1805 ax-7 1851 ax-8 1889 ax-9 1896 ax-10 1915 ax-11 1920 ax-12 1933 ax-13 2091 ax-nul 4534 ax-pow 4581 |
This theorem depends on definitions: df-bi 189 df-an 373 df-tru 1447 df-ex 1664 df-nf 1668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |