MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcvx Unicode version

Theorem dvcvx 19857
Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
dvcvx.a  |-  ( ph  ->  A  e.  RR )
dvcvx.b  |-  ( ph  ->  B  e.  RR )
dvcvx.l  |-  ( ph  ->  A  <  B )
dvcvx.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvcvx.d  |-  ( ph  ->  ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W ) )
dvcvx.t  |-  ( ph  ->  T  e.  ( 0 (,) 1 ) )
dvcvx.c  |-  C  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
Assertion
Ref Expression
dvcvx  |-  ( ph  ->  ( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) )

Proof of Theorem dvcvx
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcvx.a . . 3  |-  ( ph  ->  A  e.  RR )
2 dvcvx.c . . . 4  |-  C  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
3 dvcvx.t . . . . . . 7  |-  ( ph  ->  T  e.  ( 0 (,) 1 ) )
4 elioore 10902 . . . . . . 7  |-  ( T  e.  ( 0 (,) 1 )  ->  T  e.  RR )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  T  e.  RR )
65, 1remulcld 9072 . . . . 5  |-  ( ph  ->  ( T  x.  A
)  e.  RR )
7 1re 9046 . . . . . . 7  |-  1  e.  RR
8 resubcl 9321 . . . . . . 7  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
97, 5, 8sylancr 645 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  e.  RR )
10 dvcvx.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
119, 10remulcld 9072 . . . . 5  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  e.  RR )
126, 11readdcld 9071 . . . 4  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  RR )
132, 12syl5eqel 2488 . . 3  |-  ( ph  ->  C  e.  RR )
14 ax-1cn 9004 . . . . . . . . 9  |-  1  e.  CC
1514a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
165recnd 9070 . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
171recnd 9070 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1815, 16, 17subdird 9446 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( ( 1  x.  A )  -  ( T  x.  A ) ) )
1917mulid2d 9062 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  A
)  =  A )
2019oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( 1  x.  A )  -  ( T  x.  A )
)  =  ( A  -  ( T  x.  A ) ) )
2118, 20eqtrd 2436 . . . . . 6  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( A  -  ( T  x.  A ) ) )
22 dvcvx.l . . . . . . 7  |-  ( ph  ->  A  <  B )
23 eliooord 10926 . . . . . . . . . . 11  |-  ( T  e.  ( 0 (,) 1 )  ->  (
0  <  T  /\  T  <  1 ) )
243, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  T  /\  T  <  1
) )
2524simprd 450 . . . . . . . . 9  |-  ( ph  ->  T  <  1 )
26 posdif 9477 . . . . . . . . . 10  |-  ( ( T  e.  RR  /\  1  e.  RR )  ->  ( T  <  1  <->  0  <  ( 1  -  T ) ) )
275, 7, 26sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( T  <  1  <->  0  <  ( 1  -  T ) ) )
2825, 27mpbid 202 . . . . . . . 8  |-  ( ph  ->  0  <  ( 1  -  T ) )
29 ltmul2 9817 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <  ( 1  -  T ) ) )  ->  ( A  < 
B  <->  ( ( 1  -  T )  x.  A )  <  (
( 1  -  T
)  x.  B ) ) )
301, 10, 9, 28, 29syl112anc 1188 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( 1  -  T
)  x.  A )  <  ( ( 1  -  T )  x.  B ) ) )
3122, 30mpbid 202 . . . . . 6  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  <  ( (
1  -  T )  x.  B ) )
3221, 31eqbrtrrd 4194 . . . . 5  |-  ( ph  ->  ( A  -  ( T  x.  A )
)  <  ( (
1  -  T )  x.  B ) )
331, 6, 11ltsubadd2d 9580 . . . . 5  |-  ( ph  ->  ( ( A  -  ( T  x.  A
) )  <  (
( 1  -  T
)  x.  B )  <-> 
A  <  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) )
3432, 33mpbid 202 . . . 4  |-  ( ph  ->  A  <  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )
3534, 2syl6breqr 4212 . . 3  |-  ( ph  ->  A  <  C )
361leidd 9549 . . . . 5  |-  ( ph  ->  A  <_  A )
3710recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
3815, 16, 37subdird 9446 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  =  ( ( 1  x.  B )  -  ( T  x.  B ) ) )
3937mulid2d 9062 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  x.  B
)  =  B )
4039oveq1d 6055 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  x.  B )  -  ( T  x.  B )
)  =  ( B  -  ( T  x.  B ) ) )
4138, 40eqtrd 2436 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  =  ( B  -  ( T  x.  B ) ) )
425, 10remulcld 9072 . . . . . . . . . 10  |-  ( ph  ->  ( T  x.  B
)  e.  RR )
4324simpld 446 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  T )
44 ltmul2 9817 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( A  <  B  <->  ( T  x.  A )  <  ( T  x.  B ) ) )
451, 10, 5, 43, 44syl112anc 1188 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  B  <->  ( T  x.  A )  <  ( T  x.  B ) ) )
4622, 45mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( T  x.  A
)  <  ( T  x.  B ) )
476, 42, 10, 46ltsub2dd 9595 . . . . . . . . 9  |-  ( ph  ->  ( B  -  ( T  x.  B )
)  <  ( B  -  ( T  x.  A ) ) )
4841, 47eqbrtrd 4192 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  <  ( B  -  ( T  x.  A ) ) )
496, 11, 10ltaddsub2d 9583 . . . . . . . 8  |-  ( ph  ->  ( ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  <  B  <->  ( ( 1  -  T
)  x.  B )  <  ( B  -  ( T  x.  A
) ) ) )
5048, 49mpbird 224 . . . . . . 7  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  <  B )
512, 50syl5eqbr 4205 . . . . . 6  |-  ( ph  ->  C  <  B )
5213, 10, 51ltled 9177 . . . . 5  |-  ( ph  ->  C  <_  B )
53 iccss 10934 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  A  /\  C  <_  B
) )  ->  ( A [,] C )  C_  ( A [,] B ) )
541, 10, 36, 52, 53syl22anc 1185 . . . 4  |-  ( ph  ->  ( A [,] C
)  C_  ( A [,] B ) )
55 dvcvx.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
56 rescncf 18880 . . . 4  |-  ( ( A [,] C ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] C
) )  e.  ( ( A [,] C
) -cn-> RR ) ) )
5754, 55, 56sylc 58 . . 3  |-  ( ph  ->  ( F  |`  ( A [,] C ) )  e.  ( ( A [,] C ) -cn-> RR ) )
58 ax-resscn 9003 . . . . . . . 8  |-  RR  C_  CC
5958a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
60 cncff 18876 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
6155, 60syl 16 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> RR )
62 fss 5558 . . . . . . . 8  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
6361, 58, 62sylancl 644 . . . . . . 7  |-  ( ph  ->  F : ( A [,] B ) --> CC )
64 iccssre 10948 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
651, 10, 64syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
66 iccssre 10948 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A [,] C
)  C_  RR )
671, 13, 66syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A [,] C
)  C_  RR )
68 eqid 2404 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6968tgioo2 18787 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
7068, 69dvres 19751 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( A [,] C )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] C ) ) ) )
7159, 63, 65, 67, 70syl22anc 1185 . . . . . 6  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) ) ) )
72 iccntr 18805 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) )  =  ( A (,) C
) )
731, 13, 72syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) )  =  ( A (,) C
) )
7473reseq2d 5105 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) C ) ) )
7571, 74eqtrd 2436 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) C ) ) )
7675dmeqd 5031 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  dom  (
( RR  _D  F
)  |`  ( A (,) C ) ) )
77 dmres 5126 . . . . 5  |-  dom  (
( RR  _D  F
)  |`  ( A (,) C ) )  =  ( ( A (,) C )  i^i  dom  ( RR  _D  F
) )
7810rexrd 9090 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
79 iooss2 10908 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  <_  B )  ->  ( A (,) C )  C_  ( A (,) B ) )
8078, 52, 79syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A (,) C
)  C_  ( A (,) B ) )
81 dvcvx.d . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W ) )
82 isof1o 6004 . . . . . . . 8  |-  ( ( RR  _D  F ) 
Isom  <  ,  <  (
( A (,) B
) ,  W )  ->  ( RR  _D  F ) : ( A (,) B ) -1-1-onto-> W )
83 f1odm 5637 . . . . . . . 8  |-  ( ( RR  _D  F ) : ( A (,) B ) -1-1-onto-> W  ->  dom  ( RR 
_D  F )  =  ( A (,) B
) )
8481, 82, 833syl 19 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8580, 84sseqtr4d 3345 . . . . . 6  |-  ( ph  ->  ( A (,) C
)  C_  dom  ( RR 
_D  F ) )
86 df-ss 3294 . . . . . 6  |-  ( ( A (,) C ) 
C_  dom  ( RR  _D  F )  <->  ( ( A (,) C )  i^i 
dom  ( RR  _D  F ) )  =  ( A (,) C
) )
8785, 86sylib 189 . . . . 5  |-  ( ph  ->  ( ( A (,) C )  i^i  dom  ( RR  _D  F
) )  =  ( A (,) C ) )
8877, 87syl5eq 2448 . . . 4  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A (,) C ) )  =  ( A (,) C ) )
8976, 88eqtrd 2436 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( A (,) C ) )
901, 13, 35, 57, 89mvth 19829 . 2  |-  ( ph  ->  E. x  e.  ( A (,) C ) ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) ) )
911, 13, 35ltled 9177 . . . . 5  |-  ( ph  ->  A  <_  C )
9210leidd 9549 . . . . 5  |-  ( ph  ->  B  <_  B )
93 iccss 10934 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  C  /\  B  <_  B
) )  ->  ( C [,] B )  C_  ( A [,] B ) )
941, 10, 91, 92, 93syl22anc 1185 . . . 4  |-  ( ph  ->  ( C [,] B
)  C_  ( A [,] B ) )
95 rescncf 18880 . . . 4  |-  ( ( C [,] B ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( C [,] B
) )  e.  ( ( C [,] B
) -cn-> RR ) ) )
9694, 55, 95sylc 58 . . 3  |-  ( ph  ->  ( F  |`  ( C [,] B ) )  e.  ( ( C [,] B ) -cn-> RR ) )
97 iccssre 10948 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C [,] B
)  C_  RR )
9813, 10, 97syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( C [,] B
)  C_  RR )
9968, 69dvres 19751 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( C [,] B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( C [,] B ) ) ) )
10059, 63, 65, 98, 99syl22anc 1185 . . . . . 6  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) ) ) )
101 iccntr 18805 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) )  =  ( C (,) B
) )
10213, 10, 101syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) )  =  ( C (,) B
) )
103102reseq2d 5105 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) B ) ) )
104100, 103eqtrd 2436 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) B ) ) )
105104dmeqd 5031 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  dom  (
( RR  _D  F
)  |`  ( C (,) B ) ) )
106 dmres 5126 . . . . 5  |-  dom  (
( RR  _D  F
)  |`  ( C (,) B ) )  =  ( ( C (,) B )  i^i  dom  ( RR  _D  F
) )
1071rexrd 9090 . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
108 iooss1 10907 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  <_  C )  ->  ( C (,) B )  C_  ( A (,) B ) )
109107, 91, 108syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( C (,) B
)  C_  ( A (,) B ) )
110109, 84sseqtr4d 3345 . . . . . 6  |-  ( ph  ->  ( C (,) B
)  C_  dom  ( RR 
_D  F ) )
111 df-ss 3294 . . . . . 6  |-  ( ( C (,) B ) 
C_  dom  ( RR  _D  F )  <->  ( ( C (,) B )  i^i 
dom  ( RR  _D  F ) )  =  ( C (,) B
) )
112110, 111sylib 189 . . . . 5  |-  ( ph  ->  ( ( C (,) B )  i^i  dom  ( RR  _D  F
) )  =  ( C (,) B ) )
113106, 112syl5eq 2448 . . . 4  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( C (,) B ) )  =  ( C (,) B ) )
114105, 113eqtrd 2436 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( C (,) B ) )
11513, 10, 51, 96, 114mvth 19829 . 2  |-  ( ph  ->  E. y  e.  ( C (,) B ) ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `
 B )  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  /  ( B  -  C ) ) )
116 reeanv 2835 . . 3  |-  ( E. x  e.  ( A (,) C ) E. y  e.  ( C (,) B ) ( ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) )  /\  ( ( RR 
_D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  <->  ( E. x  e.  ( A (,) C ) ( ( RR  _D  ( F  |`  ( A [,] C
) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  /\  E. y  e.  ( C (,) B ) ( ( RR  _D  ( F  |`  ( C [,] B
) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  / 
( B  -  C
) ) ) )
11775fveq1d 5689 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( RR  _D  F )  |`  ( A (,) C
) ) `  x
) )
118 fvres 5704 . . . . . . . . 9  |-  ( x  e.  ( A (,) C )  ->  (
( ( RR  _D  F )  |`  ( A (,) C ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
119118adantr 452 . . . . . . . 8  |-  ( ( x  e.  ( A (,) C )  /\  y  e.  ( C (,) B ) )  -> 
( ( ( RR 
_D  F )  |`  ( A (,) C ) ) `  x )  =  ( ( RR 
_D  F ) `  x ) )
120117, 119sylan9eq 2456 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  ( F  |`  ( A [,] C ) ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
12113rexrd 9090 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR* )
122 ubicc2 10970 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  C  e.  ( A [,] C
) )
123107, 121, 91, 122syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( A [,] C ) )
124 fvres 5704 . . . . . . . . . . 11  |-  ( C  e.  ( A [,] C )  ->  (
( F  |`  ( A [,] C ) ) `
 C )  =  ( F `  C
) )
125123, 124syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( A [,] C ) ) `  C )  =  ( F `  C ) )
126 lbicc2 10969 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  A  e.  ( A [,] C
) )
127107, 121, 91, 126syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( A [,] C ) )
128 fvres 5704 . . . . . . . . . . 11  |-  ( A  e.  ( A [,] C )  ->  (
( F  |`  ( A [,] C ) ) `
 A )  =  ( F `  A
) )
129127, 128syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( A [,] C ) ) `  A )  =  ( F `  A ) )
130125, 129oveq12d 6058 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  =  ( ( F `  C )  -  ( F `  A )
) )
131130oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  (
( F  |`  ( A [,] C ) ) `
 A ) )  /  ( C  -  A ) )  =  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( C  -  A ) ) )
132131adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) ) )
133120, 132eqeq12d 2418 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) )  <-> 
( ( RR  _D  F ) `  x
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) ) ) )
134104fveq1d 5689 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( RR  _D  F )  |`  ( C (,) B
) ) `  y
) )
135 fvres 5704 . . . . . . . . 9  |-  ( y  e.  ( C (,) B )  ->  (
( ( RR  _D  F )  |`  ( C (,) B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
136135adantl 453 . . . . . . . 8  |-  ( ( x  e.  ( A (,) C )  /\  y  e.  ( C (,) B ) )  -> 
( ( ( RR 
_D  F )  |`  ( C (,) B ) ) `  y )  =  ( ( RR 
_D  F ) `  y ) )
137134, 136sylan9eq 2456 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  ( F  |`  ( C [,] B ) ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
138 ubicc2 10970 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  B  e.  ( C [,] B
) )
139121, 78, 52, 138syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ( C [,] B ) )
140 fvres 5704 . . . . . . . . . . 11  |-  ( B  e.  ( C [,] B )  ->  (
( F  |`  ( C [,] B ) ) `
 B )  =  ( F `  B
) )
141139, 140syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( C [,] B ) ) `  B )  =  ( F `  B ) )
142 lbicc2 10969 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  C  e.  ( C [,] B
) )
143121, 78, 52, 142syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( C [,] B ) )
144 fvres 5704 . . . . . . . . . . 11  |-  ( C  e.  ( C [,] B )  ->  (
( F  |`  ( C [,] B ) ) `
 C )  =  ( F `  C
) )
145143, 144syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( C [,] B ) ) `  C )  =  ( F `  C ) )
146141, 145oveq12d 6058 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  =  ( ( F `  B )  -  ( F `  C )
) )
147146oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  (
( F  |`  ( C [,] B ) ) `
 C ) )  /  ( B  -  C ) )  =  ( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) )
148147adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  / 
( B  -  C
) )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )
149137, 148eqeq12d 2418 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `
 B )  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  /  ( B  -  C ) )  <-> 
( ( RR  _D  F ) `  y
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) ) )
150133, 149anbi12d 692 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  <->  ( (
( RR  _D  F
) `  x )  =  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  /\  (
( RR  _D  F
) `  y )  =  ( ( ( F `  B )  -  ( F `  C ) )  / 
( B  -  C
) ) ) ) )
151 elioore 10902 . . . . . . . . . 10  |-  ( x  e.  ( A (,) C )  ->  x  e.  RR )
152151ad2antrl 709 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  e.  RR )
15313adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  C  e.  RR )
154 elioore 10902 . . . . . . . . . 10  |-  ( y  e.  ( C (,) B )  ->  y  e.  RR )
155154ad2antll 710 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  y  e.  RR )
156 eliooord 10926 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) C )  ->  ( A  <  x  /\  x  <  C ) )
157156ad2antrl 709 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( A  <  x  /\  x  <  C ) )
158157simprd 450 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  <  C )
159 eliooord 10926 . . . . . . . . . . 11  |-  ( y  e.  ( C (,) B )  ->  ( C  <  y  /\  y  <  B ) )
160159ad2antll 710 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( C  <  y  /\  y  <  B ) )
161160simpld 446 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  C  <  y )
162152, 153, 155, 158, 161lttrd 9187 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  <  y )
16381adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( RR  _D  F )  Isom  <  ,  <  ( ( A (,) B ) ,  W ) )
16480sselda 3308 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  x  e.  ( A (,) B ) )
165164adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  e.  ( A (,) B
) )
166109sselda 3308 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( C (,) B ) )  ->  y  e.  ( A (,) B ) )
167166adantrl 697 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  y  e.  ( A (,) B
) )
168 isorel 6005 . . . . . . . . 9  |-  ( ( ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W )  /\  ( x  e.  ( A (,) B
)  /\  y  e.  ( A (,) B ) ) )  ->  (
x  <  y  <->  ( ( RR  _D  F ) `  x )  <  (
( RR  _D  F
) `  y )
) )
169163, 165, 167, 168syl12anc 1182 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
x  <  y  <->  ( ( RR  _D  F ) `  x )  <  (
( RR  _D  F
) `  y )
) )
170162, 169mpbid 202 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  F
) `  x )  <  ( ( RR  _D  F ) `  y
) )
171 breq12 4177 . . . . . . 7  |-  ( ( ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  /\  ( ( RR  _D  F ) `  y
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) )  ->  ( ( ( RR  _D  F ) `
 x )  < 
( ( RR  _D  F ) `  y
)  <->  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) ) )
172170, 171syl5ibcom 212 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) )  /\  ( ( RR 
_D  F ) `  y )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )  ->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) ) )
17354, 123sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( A [,] B ) )
17461, 173ffvelrnd 5830 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  C
)  e.  RR )
17554, 127sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( A [,] B ) )
17661, 175ffvelrnd 5830 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  A
)  e.  RR )
177174, 176resubcld 9421 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  C )  -  ( F `  A )
)  e.  RR )
17828gt0ne0d 9547 . . . . . . . . . 10  |-  ( ph  ->  ( 1  -  T
)  =/=  0 )
179177, 9, 178redivcld 9798 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  e.  RR )
18094, 139sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( A [,] B ) )
18161, 180ffvelrnd 5830 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  B
)  e.  RR )
182181, 174resubcld 9421 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  C )
)  e.  RR )
18343gt0ne0d 9547 . . . . . . . . . 10  |-  ( ph  ->  T  =/=  0 )
184182, 5, 183redivcld 9798 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  /  T )  e.  RR )
18510, 1resubcld 9421 . . . . . . . . 9  |-  ( ph  ->  ( B  -  A
)  e.  RR )
1861, 10posdifd 9569 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
18722, 186mpbid 202 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
188 ltdiv1 9830 . . . . . . . . 9  |-  ( ( ( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  e.  RR  /\  (
( ( F `  B )  -  ( F `  C )
)  /  T )  e.  RR  /\  (
( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) ) )  ->  ( ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  T )  <-> 
( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  <  ( (
( ( F `  B )  -  ( F `  C )
)  /  T )  /  ( B  -  A ) ) ) )
189179, 184, 185, 187, 188syl112anc 1188 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  T )  <-> 
( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  <  ( (
( ( F `  B )  -  ( F `  C )
)  /  T )  /  ( B  -  A ) ) ) )
190177recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  C )  -  ( F `  A )
)  e.  CC )
191190, 16mulcomd 9065 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  x.  T )  =  ( T  x.  ( ( F `  C )  -  ( F `  A )
) ) )
192174recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  C
)  e.  CC )
193176recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  A
)  e.  CC )
19416, 192, 193subdid 9445 . . . . . . . . . . 11  |-  ( ph  ->  ( T  x.  (
( F `  C
)  -  ( F `
 A ) ) )  =  ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) ) )
195191, 194eqtrd 2436 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  x.  T )  =  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) ) )
196182recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  B )  -  ( F `  C )
)  e.  CC )
1979recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  T
)  e.  CC )
198196, 197mulcomd 9065 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  x.  ( 1  -  T ) )  =  ( ( 1  -  T )  x.  ( ( F `  B )  -  ( F `  C )
) ) )
199181recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  e.  CC )
200197, 199, 192subdid 9445 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  (
( F `  B
)  -  ( F `
 C ) ) )  =  ( ( ( 1  -  T
)  x.  ( F `
 B ) )  -  ( ( 1  -  T )  x.  ( F `  C
) ) ) )
201198, 200eqtrd 2436 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  x.  ( 1  -  T ) )  =  ( ( ( 1  -  T )  x.  ( F `  B ) )  -  ( ( 1  -  T )  x.  ( F `  C )
) ) )
202195, 201breq12d 4185 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  x.  T )  <  (
( ( F `  B )  -  ( F `  C )
)  x.  ( 1  -  T ) )  <-> 
( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A ) ) )  <  ( ( ( 1  -  T )  x.  ( F `  B ) )  -  ( ( 1  -  T )  x.  ( F `  C )
) ) ) )
2035, 43jca 519 . . . . . . . . . 10  |-  ( ph  ->  ( T  e.  RR  /\  0  <  T ) )
2049, 28jca 519 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  T )  e.  RR  /\  0  <  ( 1  -  T ) ) )
205 lt2mul2div 9842 . . . . . . . . . 10  |-  ( ( ( ( ( F `
 C )  -  ( F `  A ) )  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  /\  ( ( ( F `  B
)  -  ( F `
 C ) )  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <  ( 1  -  T ) ) ) )  ->  ( (
( ( F `  C )  -  ( F `  A )
)  x.  T )  <  ( ( ( F `  B )  -  ( F `  C ) )  x.  ( 1  -  T
) )  <->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  T ) ) )
206177, 203, 182, 204, 205syl22anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  x.  T )  <  (
( ( F `  B )  -  ( F `  C )
)  x.  ( 1  -  T ) )  <-> 
( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  <  ( ( ( F `  B )  -  ( F `  C ) )  /  T ) ) )
2075, 174remulcld 9072 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  ( F `  C )
)  e.  RR )
208207recnd 9070 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  x.  ( F `  C )
)  e.  CC )
2099, 174remulcld 9072 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  C )
)  e.  RR )
210209recnd 9070 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  C )
)  e.  CC )
2115, 176remulcld 9072 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  ( F `  A )
)  e.  RR )
212211recnd 9070 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  x.  ( F `  A )
)  e.  CC )
213208, 210, 212addsubd 9388 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C )
) )  -  ( T  x.  ( F `  A ) ) )  =  ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) ) )
214 pncan3 9269 . . . . . . . . . . . . . . . 16  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
21516, 14, 214sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  +  ( 1  -  T ) )  =  1 )
216215oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  +  ( 1  -  T
) )  x.  ( F `  C )
)  =  ( 1  x.  ( F `  C ) ) )
21716, 197, 192adddird 9069 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  +  ( 1  -  T
) )  x.  ( F `  C )
)  =  ( ( T  x.  ( F `
 C ) )  +  ( ( 1  -  T )  x.  ( F `  C
) ) ) )
218192mulid2d 9062 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  x.  ( F `  C )
)  =  ( F `
 C ) )
219216, 217, 2183eqtr3d 2444 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C ) ) )  =  ( F `  C ) )
220219oveq1d 6055 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C )
) )  -  ( T  x.  ( F `  A ) ) )  =  ( ( F `
 C )  -  ( T  x.  ( F `  A )
) ) )
221213, 220eqtr3d 2438 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  =  ( ( F `  C )  -  ( T  x.  ( F `  A ) ) ) )
222221breq1d 4182 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  <  ( ( 1  -  T )  x.  ( F `  B ) )  <->  ( ( F `  C )  -  ( T  x.  ( F `  A ) ) )  <  (
( 1  -  T
)  x.  ( F `
 B ) ) ) )
223207, 211resubcld 9421 . . . . . . . . . . 11  |-  ( ph  ->  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A ) ) )  e.  RR )
2249, 181remulcld 9072 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  B )
)  e.  RR )
225223, 209, 224ltaddsubd 9582 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  <  ( ( 1  -  T )  x.  ( F `  B ) )  <->  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  <  (
( ( 1  -  T )  x.  ( F `  B )
)  -  ( ( 1  -  T )  x.  ( F `  C ) ) ) ) )
226174, 211, 224ltsubadd2d 9580 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( T  x.  ( F `  A )
) )  <  (
( 1  -  T
)  x.  ( F `
 B ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
227222, 225, 2263bitr3d 275 . . . . . . . . 9  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  <  (
( ( 1  -  T )  x.  ( F `  B )
)  -  ( ( 1  -  T )  x.  ( F `  C ) ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
228202, 206, 2273bitr3d 275 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  T )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
229185recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  e.  CC )
230187gt0ne0d 9547 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
231190, 197, 229, 178, 230divdiv1d 9777 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( ( 1  -  T )  x.  ( B  -  A
) ) ) )
23221oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  (
( 1  -  T
)  x.  A ) )  =  ( ( ( 1  -  T
)  x.  B )  -  ( A  -  ( T  x.  A
) ) ) )
23311recnd 9070 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  e.  CC )
2346recnd 9070 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  A
)  e.  CC )
235233, 17, 234subsub3d 9397 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  ( A  -  ( T  x.  A ) ) )  =  ( ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) )  -  A ) )
236232, 235eqtrd 2436 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  (
( 1  -  T
)  x.  A ) )  =  ( ( ( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) )  -  A ) )
237197, 37, 17subdid 9445 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  T )  x.  ( B  -  A )
)  =  ( ( ( 1  -  T
)  x.  B )  -  ( ( 1  -  T )  x.  A ) ) )
238234, 233addcomd 9224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  =  ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) ) )
2392, 238syl5eq 2448 . . . . . . . . . . . . 13  |-  ( ph  ->  C  =  ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) ) )
240239oveq1d 6055 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  A
)  =  ( ( ( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) )  -  A ) )
241236, 237, 2403eqtr4d 2446 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  ( B  -  A )
)  =  ( C  -  A ) )
242241oveq2d 6056 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( ( 1  -  T )  x.  ( B  -  A ) ) )  =  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) ) )
243231, 242eqtrd 2436 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) ) )
244196, 16, 229, 183, 230divdiv1d 9777 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  C ) )  /  T )  /  ( B  -  A )
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( T  x.  ( B  -  A
) ) ) )
24537, 233, 234subsub4d 9398 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  -  ( ( 1  -  T )  x.  B
) )  -  ( T  x.  A )
)  =  ( B  -  ( ( ( 1  -  T )  x.  B )  +  ( T  x.  A
) ) ) )
24641oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  (
( 1  -  T
)  x.  B ) )  =  ( B  -  ( B  -  ( T  x.  B
) ) ) )
24742recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( T  x.  B
)  e.  CC )
24837, 247nncand 9372 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  ( B  -  ( T  x.  B ) ) )  =  ( T  x.  B ) )
249246, 248eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  (
( 1  -  T
)  x.  B ) )  =  ( T  x.  B ) )
250249oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  -  ( ( 1  -  T )  x.  B
) )  -  ( T  x.  A )
)  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
251245, 250eqtr3d 2438 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  (
( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) ) )  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
252239oveq2d 6056 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  C
)  =  ( B  -  ( ( ( 1  -  T )  x.  B )  +  ( T  x.  A
) ) ) )
25316, 37, 17subdid 9445 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  x.  ( B  -  A )
)  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
254251, 252, 2533eqtr4d 2446 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  C
)  =  ( T  x.  ( B  -  A ) ) )
255254oveq2d 6056 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) )  =  ( ( ( F `  B )  -  ( F `  C ) )  / 
( T  x.  ( B  -  A )
) ) )
256244, 255eqtr4d 2439 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  C ) )  /  T )  /  ( B  -  A )
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) )
257243, 256breq12d 4185 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  / 
( B  -  A
) )  <  (
( ( ( F `
 B )  -  ( F `  C ) )  /  T )  /  ( B  -  A ) )  <->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) ) )
258189, 228, 2573bitr3rd 276 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
259258adantr 452 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F `
 C )  -  ( F `  A ) )  /  ( C  -  A ) )  <  ( ( ( F `  B )  -  ( F `  C ) )  / 
( B  -  C
) )  <->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
260172, 259sylibd 206 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) )  /\  ( ( RR 
_D  F ) `  y )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )  ->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
261150, 260sylbid 207 . . . 4  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  ->  ( F `  C )  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
262261rexlimdvva 2797 . . 3  |-  ( ph  ->  ( E. x  e.  ( A (,) C
) E. y  e.  ( C (,) B
) ( ( ( RR  _D  ( F  |`  ( A [,] C
) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  /\  (
( RR  _D  ( F  |`  ( C [,] B ) ) ) `
 y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  (
( F  |`  ( C [,] B ) ) `
 C ) )  /  ( B  -  C ) ) )  ->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
263116, 262syl5bir 210 . 2  |-  ( ph  ->  ( ( E. x  e.  ( A (,) C
) ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  E. y  e.  ( C (,) B
) ( ( RR 
_D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  ->  ( F `  C )  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
26490, 115, 263mp2and 661 1  |-  ( ph  ->  ( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667    i^i cin 3279    C_ wss 3280   class class class wbr 4172   dom cdm 4837   ran crn 4838    |` cres 4839   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   (,)cioo 10872   [,]cicc 10875   TopOpenctopn 13604   topGenctg 13620  ℂfldccnfld 16658   intcnt 17036   -cn->ccncf 18859    _D cdv 19703
This theorem is referenced by:  efcvx  20318  logccv  20507
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator