MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcvx Structured version   Visualization version   Unicode version

Theorem dvcvx 23051
Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
dvcvx.a  |-  ( ph  ->  A  e.  RR )
dvcvx.b  |-  ( ph  ->  B  e.  RR )
dvcvx.l  |-  ( ph  ->  A  <  B )
dvcvx.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvcvx.d  |-  ( ph  ->  ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W ) )
dvcvx.t  |-  ( ph  ->  T  e.  ( 0 (,) 1 ) )
dvcvx.c  |-  C  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
Assertion
Ref Expression
dvcvx  |-  ( ph  ->  ( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) )

Proof of Theorem dvcvx
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcvx.a . . 3  |-  ( ph  ->  A  e.  RR )
2 dvcvx.c . . . 4  |-  C  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
3 dvcvx.t . . . . . . 7  |-  ( ph  ->  T  e.  ( 0 (,) 1 ) )
4 elioore 11691 . . . . . . 7  |-  ( T  e.  ( 0 (,) 1 )  ->  T  e.  RR )
53, 4syl 17 . . . . . 6  |-  ( ph  ->  T  e.  RR )
65, 1remulcld 9689 . . . . 5  |-  ( ph  ->  ( T  x.  A
)  e.  RR )
7 1re 9660 . . . . . . 7  |-  1  e.  RR
8 resubcl 9958 . . . . . . 7  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
97, 5, 8sylancr 676 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  e.  RR )
10 dvcvx.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
119, 10remulcld 9689 . . . . 5  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  e.  RR )
126, 11readdcld 9688 . . . 4  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  RR )
132, 12syl5eqel 2553 . . 3  |-  ( ph  ->  C  e.  RR )
14 1cnd 9677 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
155recnd 9687 . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
161recnd 9687 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1714, 15, 16subdird 10096 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( ( 1  x.  A )  -  ( T  x.  A ) ) )
1816mulid2d 9679 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  A
)  =  A )
1918oveq1d 6323 . . . . . . 7  |-  ( ph  ->  ( ( 1  x.  A )  -  ( T  x.  A )
)  =  ( A  -  ( T  x.  A ) ) )
2017, 19eqtrd 2505 . . . . . 6  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( A  -  ( T  x.  A ) ) )
21 dvcvx.l . . . . . . 7  |-  ( ph  ->  A  <  B )
22 eliooord 11719 . . . . . . . . . . 11  |-  ( T  e.  ( 0 (,) 1 )  ->  (
0  <  T  /\  T  <  1 ) )
233, 22syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  T  /\  T  <  1
) )
2423simprd 470 . . . . . . . . 9  |-  ( ph  ->  T  <  1 )
25 posdif 10128 . . . . . . . . . 10  |-  ( ( T  e.  RR  /\  1  e.  RR )  ->  ( T  <  1  <->  0  <  ( 1  -  T ) ) )
265, 7, 25sylancl 675 . . . . . . . . 9  |-  ( ph  ->  ( T  <  1  <->  0  <  ( 1  -  T ) ) )
2724, 26mpbid 215 . . . . . . . 8  |-  ( ph  ->  0  <  ( 1  -  T ) )
28 ltmul2 10478 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <  ( 1  -  T ) ) )  ->  ( A  < 
B  <->  ( ( 1  -  T )  x.  A )  <  (
( 1  -  T
)  x.  B ) ) )
291, 10, 9, 27, 28syl112anc 1296 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( 1  -  T
)  x.  A )  <  ( ( 1  -  T )  x.  B ) ) )
3021, 29mpbid 215 . . . . . 6  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  <  ( (
1  -  T )  x.  B ) )
3120, 30eqbrtrrd 4418 . . . . 5  |-  ( ph  ->  ( A  -  ( T  x.  A )
)  <  ( (
1  -  T )  x.  B ) )
321, 6, 11ltsubadd2d 10232 . . . . 5  |-  ( ph  ->  ( ( A  -  ( T  x.  A
) )  <  (
( 1  -  T
)  x.  B )  <-> 
A  <  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) )
3331, 32mpbid 215 . . . 4  |-  ( ph  ->  A  <  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )
3433, 2syl6breqr 4436 . . 3  |-  ( ph  ->  A  <  C )
351leidd 10201 . . . . 5  |-  ( ph  ->  A  <_  A )
3610recnd 9687 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
3714, 15, 36subdird 10096 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  =  ( ( 1  x.  B )  -  ( T  x.  B ) ) )
3836mulid2d 9679 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  x.  B
)  =  B )
3938oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  x.  B )  -  ( T  x.  B )
)  =  ( B  -  ( T  x.  B ) ) )
4037, 39eqtrd 2505 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  =  ( B  -  ( T  x.  B ) ) )
415, 10remulcld 9689 . . . . . . . . . 10  |-  ( ph  ->  ( T  x.  B
)  e.  RR )
4223simpld 466 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  T )
43 ltmul2 10478 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( A  <  B  <->  ( T  x.  A )  <  ( T  x.  B ) ) )
441, 10, 5, 42, 43syl112anc 1296 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  B  <->  ( T  x.  A )  <  ( T  x.  B ) ) )
4521, 44mpbid 215 . . . . . . . . . 10  |-  ( ph  ->  ( T  x.  A
)  <  ( T  x.  B ) )
466, 41, 10, 45ltsub2dd 10247 . . . . . . . . 9  |-  ( ph  ->  ( B  -  ( T  x.  B )
)  <  ( B  -  ( T  x.  A ) ) )
4740, 46eqbrtrd 4416 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  <  ( B  -  ( T  x.  A ) ) )
486, 11, 10ltaddsub2d 10235 . . . . . . . 8  |-  ( ph  ->  ( ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  <  B  <->  ( ( 1  -  T
)  x.  B )  <  ( B  -  ( T  x.  A
) ) ) )
4947, 48mpbird 240 . . . . . . 7  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  <  B )
502, 49syl5eqbr 4429 . . . . . 6  |-  ( ph  ->  C  <  B )
5113, 10, 50ltled 9800 . . . . 5  |-  ( ph  ->  C  <_  B )
52 iccss 11727 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  A  /\  C  <_  B
) )  ->  ( A [,] C )  C_  ( A [,] B ) )
531, 10, 35, 51, 52syl22anc 1293 . . . 4  |-  ( ph  ->  ( A [,] C
)  C_  ( A [,] B ) )
54 dvcvx.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
55 rescncf 22007 . . . 4  |-  ( ( A [,] C ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] C
) )  e.  ( ( A [,] C
) -cn-> RR ) ) )
5653, 54, 55sylc 61 . . 3  |-  ( ph  ->  ( F  |`  ( A [,] C ) )  e.  ( ( A [,] C ) -cn-> RR ) )
57 ax-resscn 9614 . . . . . . . 8  |-  RR  C_  CC
5857a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
59 cncff 22003 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
6054, 59syl 17 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> RR )
61 fss 5749 . . . . . . . 8  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
6260, 57, 61sylancl 675 . . . . . . 7  |-  ( ph  ->  F : ( A [,] B ) --> CC )
63 iccssre 11741 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
641, 10, 63syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
65 iccssre 11741 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A [,] C
)  C_  RR )
661, 13, 65syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( A [,] C
)  C_  RR )
67 eqid 2471 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6867tgioo2 21899 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
6967, 68dvres 22945 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( A [,] C )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] C ) ) ) )
7058, 62, 64, 66, 69syl22anc 1293 . . . . . 6  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) ) ) )
71 iccntr 21917 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) )  =  ( A (,) C
) )
721, 13, 71syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) )  =  ( A (,) C
) )
7372reseq2d 5111 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) C ) ) )
7470, 73eqtrd 2505 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) C ) ) )
7574dmeqd 5042 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  dom  (
( RR  _D  F
)  |`  ( A (,) C ) ) )
76 dmres 5131 . . . . 5  |-  dom  (
( RR  _D  F
)  |`  ( A (,) C ) )  =  ( ( A (,) C )  i^i  dom  ( RR  _D  F
) )
7710rexrd 9708 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
78 iooss2 11697 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  <_  B )  ->  ( A (,) C )  C_  ( A (,) B ) )
7977, 51, 78syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( A (,) C
)  C_  ( A (,) B ) )
80 dvcvx.d . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W ) )
81 isof1o 6234 . . . . . . . 8  |-  ( ( RR  _D  F ) 
Isom  <  ,  <  (
( A (,) B
) ,  W )  ->  ( RR  _D  F ) : ( A (,) B ) -1-1-onto-> W )
82 f1odm 5832 . . . . . . . 8  |-  ( ( RR  _D  F ) : ( A (,) B ) -1-1-onto-> W  ->  dom  ( RR 
_D  F )  =  ( A (,) B
) )
8380, 81, 823syl 18 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8479, 83sseqtr4d 3455 . . . . . 6  |-  ( ph  ->  ( A (,) C
)  C_  dom  ( RR 
_D  F ) )
85 df-ss 3404 . . . . . 6  |-  ( ( A (,) C ) 
C_  dom  ( RR  _D  F )  <->  ( ( A (,) C )  i^i 
dom  ( RR  _D  F ) )  =  ( A (,) C
) )
8684, 85sylib 201 . . . . 5  |-  ( ph  ->  ( ( A (,) C )  i^i  dom  ( RR  _D  F
) )  =  ( A (,) C ) )
8776, 86syl5eq 2517 . . . 4  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A (,) C ) )  =  ( A (,) C ) )
8875, 87eqtrd 2505 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A [,] C ) ) )  =  ( A (,) C ) )
891, 13, 34, 56, 88mvth 23023 . 2  |-  ( ph  ->  E. x  e.  ( A (,) C ) ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) ) )
901, 13, 34ltled 9800 . . . . 5  |-  ( ph  ->  A  <_  C )
9110leidd 10201 . . . . 5  |-  ( ph  ->  B  <_  B )
92 iccss 11727 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  C  /\  B  <_  B
) )  ->  ( C [,] B )  C_  ( A [,] B ) )
931, 10, 90, 91, 92syl22anc 1293 . . . 4  |-  ( ph  ->  ( C [,] B
)  C_  ( A [,] B ) )
94 rescncf 22007 . . . 4  |-  ( ( C [,] B ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( C [,] B
) )  e.  ( ( C [,] B
) -cn-> RR ) ) )
9593, 54, 94sylc 61 . . 3  |-  ( ph  ->  ( F  |`  ( C [,] B ) )  e.  ( ( C [,] B ) -cn-> RR ) )
96 iccssre 11741 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C [,] B
)  C_  RR )
9713, 10, 96syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( C [,] B
)  C_  RR )
9867, 68dvres 22945 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( C [,] B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( C [,] B ) ) ) )
9958, 62, 64, 97, 98syl22anc 1293 . . . . . 6  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) ) ) )
100 iccntr 21917 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) )  =  ( C (,) B
) )
10113, 10, 100syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) )  =  ( C (,) B
) )
102101reseq2d 5111 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) B ) ) )
10399, 102eqtrd 2505 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) B ) ) )
104103dmeqd 5042 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  dom  (
( RR  _D  F
)  |`  ( C (,) B ) ) )
105 dmres 5131 . . . . 5  |-  dom  (
( RR  _D  F
)  |`  ( C (,) B ) )  =  ( ( C (,) B )  i^i  dom  ( RR  _D  F
) )
1061rexrd 9708 . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
107 iooss1 11696 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  <_  C )  ->  ( C (,) B )  C_  ( A (,) B ) )
108106, 90, 107syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( C (,) B
)  C_  ( A (,) B ) )
109108, 83sseqtr4d 3455 . . . . . 6  |-  ( ph  ->  ( C (,) B
)  C_  dom  ( RR 
_D  F ) )
110 df-ss 3404 . . . . . 6  |-  ( ( C (,) B ) 
C_  dom  ( RR  _D  F )  <->  ( ( C (,) B )  i^i 
dom  ( RR  _D  F ) )  =  ( C (,) B
) )
111109, 110sylib 201 . . . . 5  |-  ( ph  ->  ( ( C (,) B )  i^i  dom  ( RR  _D  F
) )  =  ( C (,) B ) )
112105, 111syl5eq 2517 . . . 4  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( C (,) B ) )  =  ( C (,) B ) )
113104, 112eqtrd 2505 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] B ) ) )  =  ( C (,) B ) )
11413, 10, 50, 95, 113mvth 23023 . 2  |-  ( ph  ->  E. y  e.  ( C (,) B ) ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `
 B )  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  /  ( B  -  C ) ) )
115 reeanv 2944 . . 3  |-  ( E. x  e.  ( A (,) C ) E. y  e.  ( C (,) B ) ( ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) )  /\  ( ( RR 
_D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  <->  ( E. x  e.  ( A (,) C ) ( ( RR  _D  ( F  |`  ( A [,] C
) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  /\  E. y  e.  ( C (,) B ) ( ( RR  _D  ( F  |`  ( C [,] B
) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  / 
( B  -  C
) ) ) )
11674fveq1d 5881 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( RR  _D  F )  |`  ( A (,) C
) ) `  x
) )
117 fvres 5893 . . . . . . . . 9  |-  ( x  e.  ( A (,) C )  ->  (
( ( RR  _D  F )  |`  ( A (,) C ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
118117adantr 472 . . . . . . . 8  |-  ( ( x  e.  ( A (,) C )  /\  y  e.  ( C (,) B ) )  -> 
( ( ( RR 
_D  F )  |`  ( A (,) C ) ) `  x )  =  ( ( RR 
_D  F ) `  x ) )
119116, 118sylan9eq 2525 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  ( F  |`  ( A [,] C ) ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
12013rexrd 9708 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR* )
121 ubicc2 11775 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  C  e.  ( A [,] C
) )
122106, 120, 90, 121syl3anc 1292 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( A [,] C ) )
123 fvres 5893 . . . . . . . . . . 11  |-  ( C  e.  ( A [,] C )  ->  (
( F  |`  ( A [,] C ) ) `
 C )  =  ( F `  C
) )
124122, 123syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( A [,] C ) ) `  C )  =  ( F `  C ) )
125 lbicc2 11774 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  A  e.  ( A [,] C
) )
126106, 120, 90, 125syl3anc 1292 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( A [,] C ) )
127 fvres 5893 . . . . . . . . . . 11  |-  ( A  e.  ( A [,] C )  ->  (
( F  |`  ( A [,] C ) ) `
 A )  =  ( F `  A
) )
128126, 127syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( A [,] C ) ) `  A )  =  ( F `  A ) )
129124, 128oveq12d 6326 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  =  ( ( F `  C )  -  ( F `  A )
) )
130129oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  (
( F  |`  ( A [,] C ) ) `
 A ) )  /  ( C  -  A ) )  =  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( C  -  A ) ) )
131130adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) ) )
132119, 131eqeq12d 2486 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( RR  _D  ( F  |`  ( A [,] C ) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C ) ) `
 C )  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  /  ( C  -  A ) )  <-> 
( ( RR  _D  F ) `  x
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) ) ) )
133103fveq1d 5881 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( RR  _D  F )  |`  ( C (,) B
) ) `  y
) )
134 fvres 5893 . . . . . . . . 9  |-  ( y  e.  ( C (,) B )  ->  (
( ( RR  _D  F )  |`  ( C (,) B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
135134adantl 473 . . . . . . . 8  |-  ( ( x  e.  ( A (,) C )  /\  y  e.  ( C (,) B ) )  -> 
( ( ( RR 
_D  F )  |`  ( C (,) B ) ) `  y )  =  ( ( RR 
_D  F ) `  y ) )
136133, 135sylan9eq 2525 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  ( F  |`  ( C [,] B ) ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
137 ubicc2 11775 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  B  e.  ( C [,] B
) )
138120, 77, 51, 137syl3anc 1292 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ( C [,] B ) )
139 fvres 5893 . . . . . . . . . . 11  |-  ( B  e.  ( C [,] B )  ->  (
( F  |`  ( C [,] B ) ) `
 B )  =  ( F `  B
) )
140138, 139syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( C [,] B ) ) `  B )  =  ( F `  B ) )
141 lbicc2 11774 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  C  e.  ( C [,] B
) )
142120, 77, 51, 141syl3anc 1292 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( C [,] B ) )
143 fvres 5893 . . . . . . . . . . 11  |-  ( C  e.  ( C [,] B )  ->  (
( F  |`  ( C [,] B ) ) `
 C )  =  ( F `  C
) )
144142, 143syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  |`  ( C [,] B ) ) `  C )  =  ( F `  C ) )
145140, 144oveq12d 6326 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  =  ( ( F `  B )  -  ( F `  C )
) )
146145oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  (
( F  |`  ( C [,] B ) ) `
 C ) )  /  ( B  -  C ) )  =  ( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) )
147146adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F  |`  ( C [,] B
) ) `  B
)  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  / 
( B  -  C
) )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )
148136, 147eqeq12d 2486 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `
 B )  -  ( ( F  |`  ( C [,] B ) ) `  C ) )  /  ( B  -  C ) )  <-> 
( ( RR  _D  F ) `  y
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) ) )
149132, 148anbi12d 725 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  <->  ( (
( RR  _D  F
) `  x )  =  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  /\  (
( RR  _D  F
) `  y )  =  ( ( ( F `  B )  -  ( F `  C ) )  / 
( B  -  C
) ) ) ) )
150 elioore 11691 . . . . . . . . . 10  |-  ( x  e.  ( A (,) C )  ->  x  e.  RR )
151150ad2antrl 742 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  e.  RR )
15213adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  C  e.  RR )
153 elioore 11691 . . . . . . . . . 10  |-  ( y  e.  ( C (,) B )  ->  y  e.  RR )
154153ad2antll 743 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  y  e.  RR )
155 eliooord 11719 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) C )  ->  ( A  <  x  /\  x  <  C ) )
156155ad2antrl 742 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( A  <  x  /\  x  <  C ) )
157156simprd 470 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  <  C )
158 eliooord 11719 . . . . . . . . . . 11  |-  ( y  e.  ( C (,) B )  ->  ( C  <  y  /\  y  <  B ) )
159158ad2antll 743 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( C  <  y  /\  y  <  B ) )
160159simpld 466 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  C  <  y )
161151, 152, 154, 157, 160lttrd 9813 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  <  y )
16280adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  ( RR  _D  F )  Isom  <  ,  <  ( ( A (,) B ) ,  W ) )
16379sselda 3418 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  x  e.  ( A (,) B ) )
164163adantrr 731 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  x  e.  ( A (,) B
) )
165108sselda 3418 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( C (,) B ) )  ->  y  e.  ( A (,) B ) )
166165adantrl 730 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  y  e.  ( A (,) B
) )
167 isorel 6235 . . . . . . . . 9  |-  ( ( ( RR  _D  F
)  Isom  <  ,  <  ( ( A (,) B
) ,  W )  /\  ( x  e.  ( A (,) B
)  /\  y  e.  ( A (,) B ) ) )  ->  (
x  <  y  <->  ( ( RR  _D  F ) `  x )  <  (
( RR  _D  F
) `  y )
) )
168162, 164, 166, 167syl12anc 1290 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
x  <  y  <->  ( ( RR  _D  F ) `  x )  <  (
( RR  _D  F
) `  y )
) )
169161, 168mpbid 215 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( RR  _D  F
) `  x )  <  ( ( RR  _D  F ) `  y
) )
170 breq12 4400 . . . . . . 7  |-  ( ( ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  /\  ( ( RR  _D  F ) `  y
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) )  ->  ( ( ( RR  _D  F ) `
 x )  < 
( ( RR  _D  F ) `  y
)  <->  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) ) )
171169, 170syl5ibcom 228 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) )  /\  ( ( RR 
_D  F ) `  y )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )  ->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) ) )
17253, 122sseldd 3419 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( A [,] B ) )
17360, 172ffvelrnd 6038 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  C
)  e.  RR )
17453, 126sseldd 3419 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( A [,] B ) )
17560, 174ffvelrnd 6038 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  A
)  e.  RR )
176173, 175resubcld 10068 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  C )  -  ( F `  A )
)  e.  RR )
17727gt0ne0d 10199 . . . . . . . . . 10  |-  ( ph  ->  ( 1  -  T
)  =/=  0 )
178176, 9, 177redivcld 10457 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  e.  RR )
17993, 138sseldd 3419 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( A [,] B ) )
18060, 179ffvelrnd 6038 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  B
)  e.  RR )
181180, 173resubcld 10068 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  C )
)  e.  RR )
18242gt0ne0d 10199 . . . . . . . . . 10  |-  ( ph  ->  T  =/=  0 )
183181, 5, 182redivcld 10457 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  /  T )  e.  RR )
18410, 1resubcld 10068 . . . . . . . . 9  |-  ( ph  ->  ( B  -  A
)  e.  RR )
1851, 10posdifd 10221 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
18621, 185mpbid 215 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
187 ltdiv1 10491 . . . . . . . . 9  |-  ( ( ( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  e.  RR  /\  (
( ( F `  B )  -  ( F `  C )
)  /  T )  e.  RR  /\  (
( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) ) )  ->  ( ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  T )  <-> 
( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  <  ( (
( ( F `  B )  -  ( F `  C )
)  /  T )  /  ( B  -  A ) ) ) )
188178, 183, 184, 186, 187syl112anc 1296 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  T )  <-> 
( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  <  ( (
( ( F `  B )  -  ( F `  C )
)  /  T )  /  ( B  -  A ) ) ) )
189176recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  C )  -  ( F `  A )
)  e.  CC )
190189, 15mulcomd 9682 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  x.  T )  =  ( T  x.  ( ( F `  C )  -  ( F `  A )
) ) )
191173recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  C
)  e.  CC )
192175recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  A
)  e.  CC )
19315, 191, 192subdid 10095 . . . . . . . . . . 11  |-  ( ph  ->  ( T  x.  (
( F `  C
)  -  ( F `
 A ) ) )  =  ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) ) )
194190, 193eqtrd 2505 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  x.  T )  =  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) ) )
195181recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  B )  -  ( F `  C )
)  e.  CC )
1969recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  T
)  e.  CC )
197195, 196mulcomd 9682 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  x.  ( 1  -  T ) )  =  ( ( 1  -  T )  x.  ( ( F `  B )  -  ( F `  C )
) ) )
198180recnd 9687 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  e.  CC )
199196, 198, 191subdid 10095 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  (
( F `  B
)  -  ( F `
 C ) ) )  =  ( ( ( 1  -  T
)  x.  ( F `
 B ) )  -  ( ( 1  -  T )  x.  ( F `  C
) ) ) )
200197, 199eqtrd 2505 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  x.  ( 1  -  T ) )  =  ( ( ( 1  -  T )  x.  ( F `  B ) )  -  ( ( 1  -  T )  x.  ( F `  C )
) ) )
201194, 200breq12d 4408 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  x.  T )  <  (
( ( F `  B )  -  ( F `  C )
)  x.  ( 1  -  T ) )  <-> 
( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A ) ) )  <  ( ( ( 1  -  T )  x.  ( F `  B ) )  -  ( ( 1  -  T )  x.  ( F `  C )
) ) ) )
2025, 42jca 541 . . . . . . . . . 10  |-  ( ph  ->  ( T  e.  RR  /\  0  <  T ) )
2039, 27jca 541 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  T )  e.  RR  /\  0  <  ( 1  -  T ) ) )
204 lt2mul2div 10505 . . . . . . . . . 10  |-  ( ( ( ( ( F `
 C )  -  ( F `  A ) )  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  /\  ( ( ( F `  B
)  -  ( F `
 C ) )  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <  ( 1  -  T ) ) ) )  ->  ( (
( ( F `  C )  -  ( F `  A )
)  x.  T )  <  ( ( ( F `  B )  -  ( F `  C ) )  x.  ( 1  -  T
) )  <->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  T ) ) )
205176, 202, 181, 203, 204syl22anc 1293 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  x.  T )  <  (
( ( F `  B )  -  ( F `  C )
)  x.  ( 1  -  T ) )  <-> 
( ( ( F `
 C )  -  ( F `  A ) )  /  ( 1  -  T ) )  <  ( ( ( F `  B )  -  ( F `  C ) )  /  T ) ) )
2065, 173remulcld 9689 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  ( F `  C )
)  e.  RR )
207206recnd 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  x.  ( F `  C )
)  e.  CC )
2089, 173remulcld 9689 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  C )
)  e.  RR )
209208recnd 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  C )
)  e.  CC )
2105, 175remulcld 9689 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  ( F `  A )
)  e.  RR )
211210recnd 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  x.  ( F `  A )
)  e.  CC )
212207, 209, 211addsubd 10026 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C )
) )  -  ( T  x.  ( F `  A ) ) )  =  ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) ) )
213 ax-1cn 9615 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
214 pncan3 9903 . . . . . . . . . . . . . . . 16  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
21515, 213, 214sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  +  ( 1  -  T ) )  =  1 )
216215oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  +  ( 1  -  T
) )  x.  ( F `  C )
)  =  ( 1  x.  ( F `  C ) ) )
21715, 196, 191adddird 9686 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  +  ( 1  -  T
) )  x.  ( F `  C )
)  =  ( ( T  x.  ( F `
 C ) )  +  ( ( 1  -  T )  x.  ( F `  C
) ) ) )
218191mulid2d 9679 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  x.  ( F `  C )
)  =  ( F `
 C ) )
219216, 217, 2183eqtr3d 2513 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C ) ) )  =  ( F `  C ) )
220219oveq1d 6323 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  +  ( ( 1  -  T )  x.  ( F `  C )
) )  -  ( T  x.  ( F `  A ) ) )  =  ( ( F `
 C )  -  ( T  x.  ( F `  A )
) ) )
221212, 220eqtr3d 2507 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  =  ( ( F `  C )  -  ( T  x.  ( F `  A ) ) ) )
222221breq1d 4405 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  <  ( ( 1  -  T )  x.  ( F `  B ) )  <->  ( ( F `  C )  -  ( T  x.  ( F `  A ) ) )  <  (
( 1  -  T
)  x.  ( F `
 B ) ) ) )
223206, 210resubcld 10068 . . . . . . . . . . 11  |-  ( ph  ->  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A ) ) )  e.  RR )
2249, 180remulcld 9689 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  ( F `  B )
)  e.  RR )
225223, 208, 224ltaddsubd 10234 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( T  x.  ( F `
 C ) )  -  ( T  x.  ( F `  A ) ) )  +  ( ( 1  -  T
)  x.  ( F `
 C ) ) )  <  ( ( 1  -  T )  x.  ( F `  B ) )  <->  ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  <  (
( ( 1  -  T )  x.  ( F `  B )
)  -  ( ( 1  -  T )  x.  ( F `  C ) ) ) ) )
226173, 210, 224ltsubadd2d 10232 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( T  x.  ( F `  A )
) )  <  (
( 1  -  T
)  x.  ( F `
 B ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
227222, 225, 2263bitr3d 291 . . . . . . . . 9  |-  ( ph  ->  ( ( ( T  x.  ( F `  C ) )  -  ( T  x.  ( F `  A )
) )  <  (
( ( 1  -  T )  x.  ( F `  B )
)  -  ( ( 1  -  T )  x.  ( F `  C ) ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
228201, 205, 2273bitr3d 291 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  T )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
229184recnd 9687 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  e.  CC )
230186gt0ne0d 10199 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
231189, 196, 229, 177, 230divdiv1d 10436 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( ( 1  -  T )  x.  ( B  -  A
) ) ) )
23220oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  (
( 1  -  T
)  x.  A ) )  =  ( ( ( 1  -  T
)  x.  B )  -  ( A  -  ( T  x.  A
) ) ) )
23311recnd 9687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  -  T )  x.  B
)  e.  CC )
2346recnd 9687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  x.  A
)  e.  CC )
235233, 16, 234subsub3d 10035 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  ( A  -  ( T  x.  A ) ) )  =  ( ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) )  -  A ) )
236232, 235eqtrd 2505 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 1  -  T )  x.  B )  -  (
( 1  -  T
)  x.  A ) )  =  ( ( ( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) )  -  A ) )
237196, 36, 16subdid 10095 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  T )  x.  ( B  -  A )
)  =  ( ( ( 1  -  T
)  x.  B )  -  ( ( 1  -  T )  x.  A ) ) )
238234, 233addcomd 9853 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  =  ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) ) )
2392, 238syl5eq 2517 . . . . . . . . . . . . 13  |-  ( ph  ->  C  =  ( ( ( 1  -  T
)  x.  B )  +  ( T  x.  A ) ) )
240239oveq1d 6323 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  A
)  =  ( ( ( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) )  -  A ) )
241236, 237, 2403eqtr4d 2515 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  -  T )  x.  ( B  -  A )
)  =  ( C  -  A ) )
242241oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 C )  -  ( F `  A ) )  /  ( ( 1  -  T )  x.  ( B  -  A ) ) )  =  ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) ) )
243231, 242eqtrd 2505 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( 1  -  T
) )  /  ( B  -  A )
)  =  ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) ) )
244195, 15, 229, 182, 230divdiv1d 10436 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  C ) )  /  T )  /  ( B  -  A )
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( T  x.  ( B  -  A
) ) ) )
24536, 233, 234subsub4d 10036 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  -  ( ( 1  -  T )  x.  B
) )  -  ( T  x.  A )
)  =  ( B  -  ( ( ( 1  -  T )  x.  B )  +  ( T  x.  A
) ) ) )
24640oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  (
( 1  -  T
)  x.  B ) )  =  ( B  -  ( B  -  ( T  x.  B
) ) ) )
24741recnd 9687 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( T  x.  B
)  e.  CC )
24836, 247nncand 10010 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  ( B  -  ( T  x.  B ) ) )  =  ( T  x.  B ) )
249246, 248eqtrd 2505 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  (
( 1  -  T
)  x.  B ) )  =  ( T  x.  B ) )
250249oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  -  ( ( 1  -  T )  x.  B
) )  -  ( T  x.  A )
)  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
251245, 250eqtr3d 2507 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  (
( ( 1  -  T )  x.  B
)  +  ( T  x.  A ) ) )  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
252239oveq2d 6324 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  C
)  =  ( B  -  ( ( ( 1  -  T )  x.  B )  +  ( T  x.  A
) ) ) )
25315, 36, 16subdid 10095 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  x.  ( B  -  A )
)  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
254251, 252, 2533eqtr4d 2515 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  C
)  =  ( T  x.  ( B  -  A ) ) )
255254oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) )  =  ( ( ( F `  B )  -  ( F `  C ) )  / 
( T  x.  ( B  -  A )
) ) )
256244, 255eqtr4d 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  C ) )  /  T )  /  ( B  -  A )
)  =  ( ( ( F `  B
)  -  ( F `
 C ) )  /  ( B  -  C ) ) )
257243, 256breq12d 4408 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( F `  C
)  -  ( F `
 A ) )  /  ( 1  -  T ) )  / 
( B  -  A
) )  <  (
( ( ( F `
 B )  -  ( F `  C ) )  /  T )  /  ( B  -  A ) )  <->  ( (
( F `  C
)  -  ( F `
 A ) )  /  ( C  -  A ) )  < 
( ( ( F `
 B )  -  ( F `  C ) )  /  ( B  -  C ) ) ) )
258188, 228, 2573bitr3rd 292 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F `  C )  -  ( F `  A ) )  / 
( C  -  A
) )  <  (
( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) )  <-> 
( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) ) )
259258adantr 472 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( F `
 C )  -  ( F `  A ) )  /  ( C  -  A ) )  <  ( ( ( F `  B )  -  ( F `  C ) )  / 
( B  -  C
) )  <->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
260171, 259sylibd 222 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  C )  -  ( F `  A )
)  /  ( C  -  A ) )  /\  ( ( RR 
_D  F ) `  y )  =  ( ( ( F `  B )  -  ( F `  C )
)  /  ( B  -  C ) ) )  ->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
261149, 260sylbid 223 . . . 4  |-  ( (
ph  /\  ( x  e.  ( A (,) C
)  /\  y  e.  ( C (,) B ) ) )  ->  (
( ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  ( ( RR  _D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  ->  ( F `  C )  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
262261rexlimdvva 2878 . . 3  |-  ( ph  ->  ( E. x  e.  ( A (,) C
) E. y  e.  ( C (,) B
) ( ( ( RR  _D  ( F  |`  ( A [,] C
) ) ) `  x )  =  ( ( ( ( F  |`  ( A [,] C
) ) `  C
)  -  ( ( F  |`  ( A [,] C ) ) `  A ) )  / 
( C  -  A
) )  /\  (
( RR  _D  ( F  |`  ( C [,] B ) ) ) `
 y )  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  (
( F  |`  ( C [,] B ) ) `
 C ) )  /  ( B  -  C ) ) )  ->  ( F `  C )  <  (
( T  x.  ( F `  A )
)  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
263115, 262syl5bir 226 . 2  |-  ( ph  ->  ( ( E. x  e.  ( A (,) C
) ( ( RR 
_D  ( F  |`  ( A [,] C ) ) ) `  x
)  =  ( ( ( ( F  |`  ( A [,] C ) ) `  C )  -  ( ( F  |`  ( A [,] C
) ) `  A
) )  /  ( C  -  A )
)  /\  E. y  e.  ( C (,) B
) ( ( RR 
_D  ( F  |`  ( C [,] B ) ) ) `  y
)  =  ( ( ( ( F  |`  ( C [,] B ) ) `  B )  -  ( ( F  |`  ( C [,] B
) ) `  C
) )  /  ( B  -  C )
) )  ->  ( F `  C )  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B ) ) ) ) )
26489, 114, 263mp2and 693 1  |-  ( ph  ->  ( F `  C
)  <  ( ( T  x.  ( F `  A ) )  +  ( ( 1  -  T )  x.  ( F `  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757    i^i cin 3389    C_ wss 3390   class class class wbr 4395   dom cdm 4839   ran crn 4840    |` cres 4841   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589    Isom wiso 5590  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   (,)cioo 11660   [,]cicc 11663   TopOpenctopn 15398   topGenctg 15414  ℂfldccnfld 19047   intcnt 20109   -cn->ccncf 21986    _D cdv 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901
This theorem is referenced by:  efcvx  23483  logccv  23687
  Copyright terms: Public domain W3C validator