MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobr Structured version   Unicode version

Theorem dvcobr 21556
Description: The chain rule for derivatives at a point. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvco.f  |-  ( ph  ->  F : X --> CC )
dvco.x  |-  ( ph  ->  X  C_  S )
dvco.g  |-  ( ph  ->  G : Y --> X )
dvco.y  |-  ( ph  ->  Y  C_  T )
dvcobr.s  |-  ( ph  ->  S  C_  CC )
dvcobr.t  |-  ( ph  ->  T  C_  CC )
dvco.k  |-  ( ph  ->  K  e.  V )
dvco.l  |-  ( ph  ->  L  e.  V )
dvco.bf  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
dvco.bg  |-  ( ph  ->  C ( T  _D  G ) L )
dvco.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvcobr  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )

Proof of Theorem dvcobr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4  |-  ( ph  ->  C ( T  _D  G ) L )
2 eqid 2454 . . . . 5  |-  ( Jt  T )  =  ( Jt  T )
3 dvco.j . . . . 5  |-  J  =  ( TopOpen ` fld )
4 eqid 2454 . . . . 5  |-  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )
5 dvcobr.t . . . . 5  |-  ( ph  ->  T  C_  CC )
6 dvco.g . . . . . 6  |-  ( ph  ->  G : Y --> X )
7 dvco.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
8 dvcobr.s . . . . . . 7  |-  ( ph  ->  S  C_  CC )
97, 8sstrd 3477 . . . . . 6  |-  ( ph  ->  X  C_  CC )
10 fss 5678 . . . . . 6  |-  ( ( G : Y --> X  /\  X  C_  CC )  ->  G : Y --> CC )
116, 9, 10syl2anc 661 . . . . 5  |-  ( ph  ->  G : Y --> CC )
12 dvco.y . . . . 5  |-  ( ph  ->  Y  C_  T )
132, 3, 4, 5, 11, 12eldv 21509 . . . 4  |-  ( ph  ->  ( C ( T  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
141, 13mpbid 210 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) )
1514simpld 459 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  T ) ) `  Y
) )
16 dvco.bf . . . . . . 7  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
17 dvco.f . . . . . . . 8  |-  ( ph  ->  F : X --> CC )
188, 17, 7dvcl 21510 . . . . . . 7  |-  ( (
ph  /\  ( G `  C ) ( S  _D  F ) K )  ->  K  e.  CC )
1916, 18mpdan 668 . . . . . 6  |-  ( ph  ->  K  e.  CC )
2019ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  ->  K  e.  CC )
2117adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  F : X --> CC )
22 eldifi 3589 . . . . . . . . . 10  |-  ( z  e.  ( Y  \  { C } )  -> 
z  e.  Y )
23 ffvelrn 5953 . . . . . . . . . 10  |-  ( ( G : Y --> X  /\  z  e.  Y )  ->  ( G `  z
)  e.  X )
246, 22, 23syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  z
)  e.  X )
2521, 24ffvelrnd 5956 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( F `  ( G `  z )
)  e.  CC )
2625adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( F `  ( G `  z ) )  e.  CC )
276adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  G : Y --> X )
285, 11, 12dvbss 21512 . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( T  _D  G )  C_  Y
)
29 reldv 21481 . . . . . . . . . . . . 13  |-  Rel  ( T  _D  G )
30 releldm 5183 . . . . . . . . . . . . 13  |-  ( ( Rel  ( T  _D  G )  /\  C
( T  _D  G
) L )  ->  C  e.  dom  ( T  _D  G ) )
3129, 1, 30sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  dom  ( T  _D  G ) )
3228, 31sseldd 3468 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  Y )
3332adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  C  e.  Y )
3427, 33ffvelrnd 5956 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  C
)  e.  X )
3521, 34ffvelrnd 5956 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( F `  ( G `  C )
)  e.  CC )
3635adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( F `  ( G `  C ) )  e.  CC )
3726, 36subcld 9833 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  e.  CC )
3811ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  G : Y --> CC )
3922ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  z  e.  Y
)
4038, 39ffvelrnd 5956 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( G `  z )  e.  CC )
4132ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  C  e.  Y
)
4238, 41ffvelrnd 5956 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( G `  C )  e.  CC )
4340, 42subcld 9833 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( G `
 z )  -  ( G `  C ) )  e.  CC )
44 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  -.  ( G `  z )  =  ( G `  C ) )
4540, 42subeq0ad 9843 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( G `  z )  -  ( G `  C ) )  =  0  <->  ( G `  z )  =  ( G `  C ) ) )
4645necon3abid 2698 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( G `  z )  -  ( G `  C ) )  =/=  0  <->  -.  ( G `  z )  =  ( G `  C ) ) )
4744, 46mpbird 232 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( G `
 z )  -  ( G `  C ) )  =/=  0 )
4837, 43, 47divcld 10221 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  e.  CC )
4920, 48ifclda 3932 . . . 4  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  e.  CC )
5012, 5sstrd 3477 . . . . 5  |-  ( ph  ->  Y  C_  CC )
5111, 50, 32dvlem 21507 . . . 4  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
52 ssid 3486 . . . . 5  |-  CC  C_  CC
5352a1i 11 . . . 4  |-  ( ph  ->  CC  C_  CC )
543cnfldtopon 20497 . . . . . . 7  |-  J  e.  (TopOn `  CC )
55 txtopon 19299 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
5654, 54, 55mp2an 672 . . . . . 6  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
5756toponunii 18672 . . . . . . 7  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
5857restid 14494 . . . . . 6  |-  ( ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) )  ->  ( ( J 
tX  J )t  ( CC 
X.  CC ) )  =  ( J  tX  J ) )
5956, 58ax-mp 5 . . . . 5  |-  ( ( J  tX  J )t  ( CC  X.  CC ) )  =  ( J 
tX  J )
6059eqcomi 2467 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
6124anim1i 568 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =/=  ( G `  C ) )  -> 
( ( G `  z )  e.  X  /\  ( G `  z
)  =/=  ( G `
 C ) ) )
62 eldifsn 4111 . . . . . . 7  |-  ( ( G `  z )  e.  ( X  \  { ( G `  C ) } )  <-> 
( ( G `  z )  e.  X  /\  ( G `  z
)  =/=  ( G `
 C ) ) )
6361, 62sylibr 212 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =/=  ( G `  C ) )  -> 
( G `  z
)  e.  ( X 
\  { ( G `
 C ) } ) )
6463anasss 647 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( Y  \  { C } )  /\  ( G `  z )  =/=  ( G `  C
) ) )  -> 
( G `  z
)  e.  ( X 
\  { ( G `
 C ) } ) )
65 eldifsni 4112 . . . . . . . 8  |-  ( y  e.  ( X  \  { ( G `  C ) } )  ->  y  =/=  ( G `  C )
)
66 ifnefalse 3912 . . . . . . . 8  |-  ( y  =/=  ( G `  C )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
6765, 66syl 16 . . . . . . 7  |-  ( y  e.  ( X  \  { ( G `  C ) } )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )  =  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )
6867adantl 466 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
696, 32ffvelrnd 5956 . . . . . . 7  |-  ( ph  ->  ( G `  C
)  e.  X )
7017, 9, 69dvlem 21507 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  -> 
( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) )  e.  CC )
7168, 70eqeltrd 2542 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  e.  CC )
72 limcresi 21496 . . . . . . 7  |-  ( G lim
CC  C )  C_  ( ( G  |`  ( Y  \  { C } ) ) lim CC  C )
736feqmptd 5856 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( z  e.  Y  |->  ( G `
 z ) ) )
7473reseq1d 5220 . . . . . . . . 9  |-  ( ph  ->  ( G  |`  ( Y  \  { C }
) )  =  ( ( z  e.  Y  |->  ( G `  z
) )  |`  ( Y  \  { C }
) ) )
75 difss 3594 . . . . . . . . . 10  |-  ( Y 
\  { C }
)  C_  Y
76 resmpt 5267 . . . . . . . . . 10  |-  ( ( Y  \  { C } )  C_  Y  ->  ( ( z  e.  Y  |->  ( G `  z ) )  |`  ( Y  \  { C } ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( G `
 z ) ) )
7775, 76ax-mp 5 . . . . . . . . 9  |-  ( ( z  e.  Y  |->  ( G `  z ) )  |`  ( Y  \  { C } ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( G `  z ) )
7874, 77syl6eq 2511 . . . . . . . 8  |-  ( ph  ->  ( G  |`  ( Y  \  { C }
) )  =  ( z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) )
7978oveq1d 6218 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  ( Y  \  { C } ) ) lim CC  C )  =  ( ( z  e.  ( Y  \  { C } )  |->  ( G `
 z ) ) lim
CC  C ) )
8072, 79syl5sseq 3515 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  C_  ( (
z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
81 eqid 2454 . . . . . . . . . 10  |-  ( Jt  Y )  =  ( Jt  Y )
8281, 3dvcnp2 21530 . . . . . . . . 9  |-  ( ( ( T  C_  CC  /\  G : Y --> CC  /\  Y  C_  T )  /\  C  e.  dom  ( T  _D  G ) )  ->  G  e.  ( ( ( Jt  Y )  CnP  J ) `  C ) )
835, 11, 12, 31, 82syl31anc 1222 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  Y )  CnP  J
) `  C )
)
843, 81cnplimc 21498 . . . . . . . . 9  |-  ( ( Y  C_  CC  /\  C  e.  Y )  ->  ( G  e.  ( (
( Jt  Y )  CnP  J
) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
8550, 32, 84syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  Y )  CnP  J ) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
8683, 85mpbid 210 . . . . . . 7  |-  ( ph  ->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
8786simprd 463 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
8880, 87sseldd 3468 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
89 eqid 2454 . . . . . . . . 9  |-  ( Jt  S )  =  ( Jt  S )
90 eqid 2454 . . . . . . . . 9  |-  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
9189, 3, 90, 8, 17, 7eldv 21509 . . . . . . . 8  |-  ( ph  ->  ( ( G `  C ) ( S  _D  F ) K  <-> 
( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e.  ( X  \  {
( G `  C
) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) ) )
9216, 91mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e.  ( X  \  {
( G `  C
) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) )
9392simprd 463 . . . . . 6  |-  ( ph  ->  K  e.  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) lim CC  ( G `  C )
) )
9467mpteq2ia 4485 . . . . . . 7  |-  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  if ( y  =  ( G `  C
) ,  K , 
( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) ) )  =  ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )
9594oveq1i 6213 . . . . . 6  |-  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) ) lim CC  ( G `  C ) )  =  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) lim CC  ( G `  C )
)
9693, 95syl6eleqr 2553 . . . . 5  |-  ( ph  ->  K  e.  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) ) lim CC  ( G `  C ) ) )
97 eqeq1 2458 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
y  =  ( G `
 C )  <->  ( G `  z )  =  ( G `  C ) ) )
98 fveq2 5802 . . . . . . . 8  |-  ( y  =  ( G `  z )  ->  ( F `  y )  =  ( F `  ( G `  z ) ) )
9998oveq1d 6218 . . . . . . 7  |-  ( y  =  ( G `  z )  ->  (
( F `  y
)  -  ( F `
 ( G `  C ) ) )  =  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) ) )
100 oveq1 6210 . . . . . . 7  |-  ( y  =  ( G `  z )  ->  (
y  -  ( G `
 C ) )  =  ( ( G `
 z )  -  ( G `  C ) ) )
10199, 100oveq12d 6221 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) )  =  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )
10297, 101ifbieq2d 3925 . . . . 5  |-  ( y  =  ( G `  z )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  if ( ( G `
 z )  =  ( G `  C
) ,  K , 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( ( G `  z )  -  ( G `  C ) ) ) ) )
103 iftrue 3908 . . . . . 6  |-  ( ( G `  z )  =  ( G `  C )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  =  K )
104103ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( Y  \  { C } )  /\  ( G `  z )  =  ( G `  C ) ) )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  =  K )
10564, 71, 88, 96, 102, 104limcco 21504 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) ) ) lim CC  C ) )
10614simprd 463 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
1073mulcn 20578 . . . . 5  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1085, 11, 12dvcl 21510 . . . . . . 7  |-  ( (
ph  /\  C ( T  _D  G ) L )  ->  L  e.  CC )
1091, 108mpdan 668 . . . . . 6  |-  ( ph  ->  L  e.  CC )
110 opelxpi 4982 . . . . . 6  |-  ( ( K  e.  CC  /\  L  e.  CC )  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
11119, 109, 110syl2anc 661 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
11257cncnpi 19017 . . . . 5  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
113107, 111, 112sylancr 663 . . . 4  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
11449, 51, 53, 53, 3, 60, 105, 106, 113limccnp2 21503 . . 3  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) ) lim CC  C
) )
115 oveq1 6210 . . . . . . . 8  |-  ( K  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  ->  ( K  x.  ( (
( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )
116115eqeq1d 2456 . . . . . . 7  |-  ( K  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  ->  (
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) )  <->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) ) )
117 oveq1 6210 . . . . . . . 8  |-  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  -> 
( ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  x.  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )
118117eqeq1d 2456 . . . . . . 7  |-  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  -> 
( ( ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) )  <->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) ) )
11920mul01d 9682 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  0 )  =  0 )
1209adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  X  C_  CC )
121120, 24sseldd 3468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  z
)  e.  CC )
122120, 34sseldd 3468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  C
)  e.  CC )
123121, 122subeq0ad 9843 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  =  0  <->  ( G `  z )  =  ( G `  C ) ) )
124123biimpar 485 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( G `  z )  -  ( G `  C )
)  =  0 )
125124oveq1d 6218 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  =  ( 0  / 
( z  -  C
) ) )
12650adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  Y  C_  CC )
12722adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  e.  Y )
128126, 127sseldd 3468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  e.  CC )
129126, 33sseldd 3468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  C  e.  CC )
130128, 129subcld 9833 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( z  -  C
)  e.  CC )
131 eldifsni 4112 . . . . . . . . . . . . . 14  |-  ( z  e.  ( Y  \  { C } )  -> 
z  =/=  C )
132131adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  =/=  C )
133128, 129, 132subne0d 9842 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( z  -  C
)  =/=  0 )
134130, 133div0d 10220 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( 0  /  (
z  -  C ) )  =  0 )
135134adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( 0  /  (
z  -  C ) )  =  0 )
136125, 135eqtrd 2495 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  =  0 )
137136oveq2d 6219 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( K  x.  0 ) )
138 fveq2 5802 . . . . . . . . . . . 12  |-  ( ( G `  z )  =  ( G `  C )  ->  ( F `  ( G `  z ) )  =  ( F `  ( G `  C )
) )
13925, 35subeq0ad 9843 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  =  0  <->  ( F `  ( G `  z ) )  =  ( F `  ( G `  C )
) ) )
140138, 139syl5ibr 221 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( G `  z )  =  ( G `  C )  ->  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  =  0 ) )
141140imp 429 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  =  0 )
142141oveq1d 6218 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( z  -  C ) )  =  ( 0  / 
( z  -  C
) ) )
143142, 135eqtrd 2495 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( z  -  C ) )  =  0 )
144119, 137, 1433eqtr4d 2505 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
145130adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( z  -  C )  e.  CC )
146133adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( z  -  C )  =/=  0
)
14737, 43, 145, 47, 146dmdcan2d 10251 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
148116, 118, 144, 147ifbothda 3935 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
149 fvco3 5880 . . . . . . . . 9  |-  ( ( G : Y --> X  /\  z  e.  Y )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
1506, 22, 149syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
151 fvco3 5880 . . . . . . . . . 10  |-  ( ( G : Y --> X  /\  C  e.  Y )  ->  ( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
1526, 32, 151syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
153152adantr 465 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
154150, 153oveq12d 6221 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  =  ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) ) )
155154oveq1d 6218 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( ( F  o.  G ) `
 z )  -  ( ( F  o.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
156148, 155eqtr4d 2498 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) )
157156mpteq2dva 4489 . . . 4  |-  ( ph  ->  ( z  e.  ( Y  \  { C } )  |->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )  =  ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) )
158157oveq1d 6218 . . 3  |-  ( ph  ->  ( ( z  e.  ( Y  \  { C } )  |->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) ) lim CC  C
)  =  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
159114, 158eleqtrd 2544 . 2  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
160 eqid 2454 . . 3  |-  ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  /  ( z  -  C ) ) )
161 fco 5679 . . . 4  |-  ( ( F : X --> CC  /\  G : Y --> X )  ->  ( F  o.  G ) : Y --> CC )
16217, 6, 161syl2anc 661 . . 3  |-  ( ph  ->  ( F  o.  G
) : Y --> CC )
1632, 3, 160, 5, 162, 12eldv 21509 . 2  |-  ( ph  ->  ( C ( T  _D  ( F  o.  G ) ) ( K  x.  L )  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  ( K  x.  L )  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
16415, 159, 163mpbir2and 913 1  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648    \ cdif 3436    C_ wss 3439   ifcif 3902   {csn 3988   <.cop 3994   class class class wbr 4403    |-> cmpt 4461    X. cxp 4949   dom cdm 4951    |` cres 4953    o. ccom 4955   Rel wrel 4956   -->wf 5525   ` cfv 5529  (class class class)co 6203   CCcc 9394   0cc0 9396    x. cmul 9401    - cmin 9709    / cdiv 10107   ↾t crest 14481   TopOpenctopn 14482  ℂfldccnfld 17946  TopOnctopon 18634   intcnt 18756    Cn ccn 18963    CnP ccnp 18964    tX ctx 19268   lim CC climc 21473    _D cdv 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-icc 11421  df-fz 11558  df-fzo 11669  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-ress 14302  df-plusg 14373  df-mulr 14374  df-starv 14375  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-unif 14383  df-hom 14384  df-cco 14385  df-rest 14483  df-topn 14484  df-0g 14502  df-gsum 14503  df-topgen 14504  df-pt 14505  df-prds 14508  df-xrs 14562  df-qtop 14567  df-imas 14568  df-xps 14570  df-mre 14646  df-mrc 14647  df-acs 14649  df-mnd 15537  df-submnd 15587  df-mulg 15670  df-cntz 15957  df-cmn 16403  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-cnfld 17947  df-top 18638  df-bases 18640  df-topon 18641  df-topsp 18642  df-ntr 18759  df-cn 18966  df-cnp 18967  df-tx 19270  df-hmeo 19463  df-xms 20030  df-ms 20031  df-tms 20032  df-cncf 20589  df-limc 21477  df-dv 21478
This theorem is referenced by:  dvco  21557  dvcof  21558  dvef  21588
  Copyright terms: Public domain W3C validator