MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Unicode version

Theorem dvcnvlem 22503
Description: Lemma for dvcnvre 22546. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j  |-  J  =  ( TopOpen ` fld )
dvcnv.k  |-  K  =  ( Jt  S )
dvcnv.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvcnv.y  |-  ( ph  ->  Y  e.  K )
dvcnv.f  |-  ( ph  ->  F : X -1-1-onto-> Y )
dvcnv.i  |-  ( ph  ->  `' F  e.  ( Y -cn-> X ) )
dvcnv.d  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvcnv.z  |-  ( ph  ->  -.  0  e.  ran  ( S  _D  F
) )
dvcnv.c  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
dvcnvlem  |-  ( ph  ->  ( F `  C
) ( S  _D  `' F ) ( 1  /  ( ( S  _D  F ) `  C ) ) )

Proof of Theorem dvcnvlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5  |-  ( ph  ->  F : X -1-1-onto-> Y )
2 f1of 5822 . . . . 5  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : X --> Y )
4 dvcnv.c . . . 4  |-  ( ph  ->  C  e.  X )
53, 4ffvelrnd 6033 . . 3  |-  ( ph  ->  ( F `  C
)  e.  Y )
6 dvcnv.k . . . . . 6  |-  K  =  ( Jt  S )
7 dvcnv.j . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
87cnfldtopon 21416 . . . . . . 7  |-  J  e.  (TopOn `  CC )
9 dvcnv.s . . . . . . . 8  |-  ( ph  ->  S  e.  { RR ,  CC } )
10 recnprss 22434 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
119, 10syl 16 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
12 resttopon 19789 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
138, 11, 12sylancr 663 . . . . . 6  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
146, 13syl5eqel 2549 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  S ) )
15 topontop 19554 . . . . 5  |-  ( K  e.  (TopOn `  S
)  ->  K  e.  Top )
1614, 15syl 16 . . . 4  |-  ( ph  ->  K  e.  Top )
17 dvcnv.y . . . 4  |-  ( ph  ->  Y  e.  K )
18 isopn3i 19710 . . . 4  |-  ( ( K  e.  Top  /\  Y  e.  K )  ->  ( ( int `  K
) `  Y )  =  Y )
1916, 17, 18syl2anc 661 . . 3  |-  ( ph  ->  ( ( int `  K
) `  Y )  =  Y )
205, 19eleqtrrd 2548 . 2  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  K ) `
 Y ) )
21 f1ocnv 5834 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
22 f1of 5822 . . . . . . . . 9  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
231, 21, 223syl 20 . . . . . . . 8  |-  ( ph  ->  `' F : Y --> X )
24 eldifi 3622 . . . . . . . 8  |-  ( z  e.  ( Y  \  { ( F `  C ) } )  ->  z  e.  Y
)
25 ffvelrn 6030 . . . . . . . 8  |-  ( ( `' F : Y --> X  /\  z  e.  Y )  ->  ( `' F `  z )  e.  X
)
2623, 24, 25syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( `' F `  z )  e.  X
)
2726anim1i 568 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  {
( F `  C
) } ) )  /\  ( `' F `  z )  =/=  C
)  ->  ( ( `' F `  z )  e.  X  /\  ( `' F `  z )  =/=  C ) )
28 eldifsn 4157 . . . . . 6  |-  ( ( `' F `  z )  e.  ( X  \  { C } )  <->  ( ( `' F `  z )  e.  X  /\  ( `' F `  z )  =/=  C ) )
2927, 28sylibr 212 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  {
( F `  C
) } ) )  /\  ( `' F `  z )  =/=  C
)  ->  ( `' F `  z )  e.  ( X  \  { C } ) )
3029anasss 647 . . . 4  |-  ( (
ph  /\  ( z  e.  ( Y  \  {
( F `  C
) } )  /\  ( `' F `  z )  =/=  C ) )  ->  ( `' F `  z )  e.  ( X  \  { C } ) )
31 eldifi 3622 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  -> 
y  e.  X )
32 dvcnv.d . . . . . . . . . 10  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
33 dvbsss 22432 . . . . . . . . . 10  |-  dom  ( S  _D  F )  C_  S
3432, 33syl6eqssr 3550 . . . . . . . . 9  |-  ( ph  ->  X  C_  S )
3534, 11sstrd 3509 . . . . . . . 8  |-  ( ph  ->  X  C_  CC )
3635sselda 3499 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  y  e.  CC )
3731, 36sylan2 474 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  e.  CC )
3834, 4sseldd 3500 . . . . . . . 8  |-  ( ph  ->  C  e.  S )
3911, 38sseldd 3500 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
4039adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  C  e.  CC )
4137, 40subcld 9950 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( y  -  C
)  e.  CC )
42 toponss 19557 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  S )  /\  Y  e.  K )  ->  Y  C_  S )
4314, 17, 42syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  Y  C_  S )
4443, 11sstrd 3509 . . . . . . . 8  |-  ( ph  ->  Y  C_  CC )
453, 44fssd 5746 . . . . . . 7  |-  ( ph  ->  F : X --> CC )
46 ffvelrn 6030 . . . . . . 7  |-  ( ( F : X --> CC  /\  y  e.  X )  ->  ( F `  y
)  e.  CC )
4745, 31, 46syl2an 477 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( F `  y
)  e.  CC )
4844, 5sseldd 3500 . . . . . . 7  |-  ( ph  ->  ( F `  C
)  e.  CC )
4948adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( F `  C
)  e.  CC )
5047, 49subcld 9950 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  -  ( F `  C )
)  e.  CC )
51 eldifsni 4158 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  -> 
y  =/=  C )
5251adantl 466 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  =/=  C )
5347, 49subeq0ad 9960 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =  0  <->  ( F `  y )  =  ( F `  C ) ) )
54 f1of1 5821 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
551, 54syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : X -1-1-> Y
)
5655adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  F : X -1-1-> Y )
5731adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  e.  X )
584adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  C  e.  X )
59 f1fveq 6171 . . . . . . . . 9  |-  ( ( F : X -1-1-> Y  /\  ( y  e.  X  /\  C  e.  X
) )  ->  (
( F `  y
)  =  ( F `
 C )  <->  y  =  C ) )
6056, 57, 58, 59syl12anc 1226 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  =  ( F `  C )  <-> 
y  =  C ) )
6153, 60bitrd 253 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =  0  <->  y  =  C ) )
6261necon3bid 2715 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =/=  0  <->  y  =/=  C ) )
6352, 62mpbird 232 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  -  ( F `  C )
)  =/=  0 )
6441, 50, 63divcld 10341 . . . 4  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( y  -  C )  /  (
( F `  y
)  -  ( F `
 C ) ) )  e.  CC )
65 limcresi 22415 . . . . . 6  |-  ( `' F lim CC  ( F `
 C ) ) 
C_  ( ( `' F  |`  ( Y  \  { ( F `  C ) } ) ) lim CC  ( F `
 C ) )
6623feqmptd 5926 . . . . . . . . 9  |-  ( ph  ->  `' F  =  (
z  e.  Y  |->  ( `' F `  z ) ) )
6766reseq1d 5282 . . . . . . . 8  |-  ( ph  ->  ( `' F  |`  ( Y  \  { ( F `  C ) } ) )  =  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) ) )
68 difss 3627 . . . . . . . . 9  |-  ( Y 
\  { ( F `
 C ) } )  C_  Y
69 resmpt 5333 . . . . . . . . 9  |-  ( ( Y  \  { ( F `  C ) } )  C_  Y  ->  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( `' F `  z ) ) )
7068, 69ax-mp 5 . . . . . . . 8  |-  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } ) 
|->  ( `' F `  z ) )
7167, 70syl6eq 2514 . . . . . . 7  |-  ( ph  ->  ( `' F  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( `' F `  z ) ) )
7271oveq1d 6311 . . . . . 6  |-  ( ph  ->  ( ( `' F  |`  ( Y  \  {
( F `  C
) } ) ) lim
CC  ( F `  C ) )  =  ( ( z  e.  ( Y  \  {
( F `  C
) } )  |->  ( `' F `  z ) ) lim CC  ( F `
 C ) ) )
7365, 72syl5sseq 3547 . . . . 5  |-  ( ph  ->  ( `' F lim CC  ( F `  C ) )  C_  ( (
z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( `' F `  z ) ) lim CC  ( F `  C ) ) )
74 f1ocnvfv1 6183 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  C  e.  X )  ->  ( `' F `  ( F `  C ) )  =  C )
751, 4, 74syl2anc 661 . . . . . 6  |-  ( ph  ->  ( `' F `  ( F `  C ) )  =  C )
76 dvcnv.i . . . . . . 7  |-  ( ph  ->  `' F  e.  ( Y -cn-> X ) )
7776, 5cnlimci 22419 . . . . . 6  |-  ( ph  ->  ( `' F `  ( F `  C ) )  e.  ( `' F lim CC  ( F `
 C ) ) )
7875, 77eqeltrrd 2546 . . . . 5  |-  ( ph  ->  C  e.  ( `' F lim CC  ( F `
 C ) ) )
7973, 78sseldd 3500 . . . 4  |-  ( ph  ->  C  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( `' F `  z ) ) lim CC  ( F `  C ) ) )
8045, 35, 4dvlem 22426 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  e.  CC )
8137, 40, 52subne0d 9959 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( y  -  C
)  =/=  0 )
8250, 41, 63, 81divne0d 10357 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  =/=  0 )
83 eldifsn 4157 . . . . . . . 8  |-  ( ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) )  e.  ( CC  \  { 0 } )  <-> 
( ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) )  e.  CC  /\  ( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  =/=  0 ) )
8480, 82, 83sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  e.  ( CC  \  { 0 } ) )
85 eqid 2457 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )
8684, 85fmptd 6056 . . . . . 6  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) : ( X  \  { C } ) --> ( CC  \  { 0 } ) )
87 difss 3627 . . . . . . 7  |-  ( CC 
\  { 0 } )  C_  CC
8887a1i 11 . . . . . 6  |-  ( ph  ->  ( CC  \  {
0 } )  C_  CC )
89 eqid 2457 . . . . . 6  |-  ( Jt  ( CC  \  { 0 } ) )  =  ( Jt  ( CC  \  { 0 } ) )
904, 32eleqtrrd 2548 . . . . . . . . 9  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
91 dvfg 22436 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
92 ffun 5739 . . . . . . . . . 10  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
93 funfvbrb 6001 . . . . . . . . . 10  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
949, 91, 92, 934syl 21 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
9590, 94mpbid 210 . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
966, 7, 85, 11, 45, 34eldv 22428 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) ( ( S  _D  F
) `  C )  <->  ( C  e.  ( ( int `  K ) `
 X )  /\  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) ) ) )
9795, 96mpbid 210 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  K
) `  X )  /\  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) ) )
9897simprd 463 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) )
99 resttopon 19789 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  CC )  /\  ( CC  \  { 0 } )  C_  CC )  ->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1008, 87, 99mp2an 672 . . . . . . . . 9  |-  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) )
101100a1i 11 . . . . . . . 8  |-  ( ph  ->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1028a1i 11 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  CC ) )
103 1cnd 9629 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
104101, 102, 103cnmptc 20289 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  1 )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J ) )
105101cnmptid 20288 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  x )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  ( Jt  ( CC  \  { 0 } ) ) ) )
1067, 89divcn 21498 . . . . . . . . 9  |-  /  e.  ( ( J  tX  ( Jt  ( CC  \  { 0 } ) ) )  Cn  J
)
107106a1i 11 . . . . . . . 8  |-  ( ph  ->  /  e.  ( ( J  tX  ( Jt  ( CC  \  { 0 } ) ) )  Cn  J ) )
108101, 104, 105, 107cnmpt12f 20293 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J ) )
1099, 91syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
11032feq2d 5724 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
111109, 110mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
112111, 4ffvelrnd 6033 . . . . . . . 8  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  CC )
113 ffn 5737 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
114109, 113syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
115 fnfvelrn 6029 . . . . . . . . . 10  |-  ( ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  C  e.  dom  ( S  _D  F ) )  ->  ( ( S  _D  F ) `  C )  e.  ran  ( S  _D  F
) )
116114, 90, 115syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ran  ( S  _D  F ) )
117 dvcnv.z . . . . . . . . 9  |-  ( ph  ->  -.  0  e.  ran  ( S  _D  F
) )
118 nelne2 2787 . . . . . . . . 9  |-  ( ( ( ( S  _D  F ) `  C
)  e.  ran  ( S  _D  F )  /\  -.  0  e.  ran  ( S  _D  F
) )  ->  (
( S  _D  F
) `  C )  =/=  0 )
119116, 117, 118syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  =/=  0 )
120 eldifsn 4157 . . . . . . . 8  |-  ( ( ( S  _D  F
) `  C )  e.  ( CC  \  {
0 } )  <->  ( (
( S  _D  F
) `  C )  e.  CC  /\  ( ( S  _D  F ) `
 C )  =/=  0 ) )
121112, 119, 120sylanbrc 664 . . . . . . 7  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ( CC 
\  { 0 } ) )
122100toponunii 19560 . . . . . . . 8  |-  ( CC 
\  { 0 } )  =  U. ( Jt  ( CC  \  { 0 } ) )
123122cncnpi 19906 . . . . . . 7  |-  ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J )  /\  (
( S  _D  F
) `  C )  e.  ( CC  \  {
0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  e.  ( ( ( Jt  ( CC  \  { 0 } ) )  CnP  J ) `
 ( ( S  _D  F ) `  C ) ) )
124108, 121, 123syl2anc 661 . . . . . 6  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( ( Jt  ( CC  \  {
0 } ) )  CnP  J ) `  ( ( S  _D  F ) `  C
) ) )
12586, 88, 7, 89, 98, 124limccnp 22421 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  e.  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) ) lim CC  C ) )
126 oveq2 6304 . . . . . . 7  |-  ( x  =  ( ( S  _D  F ) `  C )  ->  (
1  /  x )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
127 eqid 2457 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( 1  /  x ) )
128 ovex 6324 . . . . . . 7  |-  ( 1  /  ( ( S  _D  F ) `  C ) )  e. 
_V
129126, 127, 128fvmpt 5956 . . . . . 6  |-  ( ( ( S  _D  F
) `  C )  e.  ( CC  \  {
0 } )  -> 
( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
130121, 129syl 16 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
131 eqidd 2458 . . . . . . . 8  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) )
132 eqidd 2458 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  =  ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) )
133 oveq2 6304 . . . . . . . 8  |-  ( x  =  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) )  ->  (
1  /  x )  =  ( 1  / 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) ) ) )
13484, 131, 132, 133fmptco 6065 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) ) )  =  ( y  e.  ( X 
\  { C }
)  |->  ( 1  / 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) ) ) ) )
13550, 41, 63, 81recdivd 10358 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( 1  /  (
( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )  =  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) )
136135mpteq2dva 4543 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( 1  /  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) ) )
137134, 136eqtrd 2498 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) ) )  =  ( y  e.  ( X 
\  { C }
)  |->  ( ( y  -  C )  / 
( ( F `  y )  -  ( F `  C )
) ) ) )
138137oveq1d 6311 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  x
) )  o.  (
y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) ) lim
CC  C )  =  ( ( y  e.  ( X  \  { C } )  |->  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) ) lim CC  C ) )
139125, 130, 1383eltr3d 2559 . . . 4  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( y  -  C )  / 
( ( F `  y )  -  ( F `  C )
) ) ) lim CC  C ) )
140 oveq1 6303 . . . . 5  |-  ( y  =  ( `' F `  z )  ->  (
y  -  C )  =  ( ( `' F `  z )  -  C ) )
141 fveq2 5872 . . . . . 6  |-  ( y  =  ( `' F `  z )  ->  ( F `  y )  =  ( F `  ( `' F `  z ) ) )
142141oveq1d 6311 . . . . 5  |-  ( y  =  ( `' F `  z )  ->  (
( F `  y
)  -  ( F `
 C ) )  =  ( ( F `
 ( `' F `  z ) )  -  ( F `  C ) ) )
143140, 142oveq12d 6314 . . . 4  |-  ( y  =  ( `' F `  z )  ->  (
( y  -  C
)  /  ( ( F `  y )  -  ( F `  C ) ) )  =  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) )
144 eldifsni 4158 . . . . . . . . 9  |-  ( z  e.  ( Y  \  { ( F `  C ) } )  ->  z  =/=  ( F `  C )
)
145144adantl 466 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
z  =/=  ( F `
 C ) )
146145necomd 2728 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( F `  C
)  =/=  z )
1471adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  F : X -1-1-onto-> Y )
1484adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  C  e.  X )
14924adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
z  e.  Y )
150 f1ocnvfvb 6186 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  C  e.  X  /\  z  e.  Y )  ->  ( ( F `  C )  =  z  <-> 
( `' F `  z )  =  C ) )
151147, 148, 149, 150syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  C )  =  z  <-> 
( `' F `  z )  =  C ) )
152151necon3abid 2703 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  C )  =/=  z  <->  -.  ( `' F `  z )  =  C ) )
153146, 152mpbid 210 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  -.  ( `' F `  z )  =  C )
154153pm2.21d 106 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( `' F `  z )  =  C  ->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( 1  /  ( ( S  _D  F ) `  C ) ) ) )
155154impr 619 . . . 4  |-  ( (
ph  /\  ( z  e.  ( Y  \  {
( F `  C
) } )  /\  ( `' F `  z )  =  C ) )  ->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( 1  /  ( ( S  _D  F ) `  C ) ) )
15630, 64, 79, 139, 143, 155limcco 22423 . . 3  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) ) lim CC  ( F `  C )
) )
15775eqcomd 2465 . . . . . . . 8  |-  ( ph  ->  C  =  ( `' F `  ( F `
 C ) ) )
158157adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  C  =  ( `' F `  ( F `  C ) ) )
159158oveq2d 6312 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( `' F `  z )  -  C
)  =  ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) ) )
160 f1ocnvfv2 6184 . . . . . . . 8  |-  ( ( F : X -1-1-onto-> Y  /\  z  e.  Y )  ->  ( F `  ( `' F `  z ) )  =  z )
1611, 24, 160syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( F `  ( `' F `  z ) )  =  z )
162161oveq1d 6311 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) )  =  ( z  -  ( F `  C ) ) )
163159, 162oveq12d 6314 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( ( ( `' F `  z )  -  ( `' F `  ( F `
 C ) ) )  /  ( z  -  ( F `  C ) ) ) )
164163mpteq2dva 4543 . . . 4  |-  ( ph  ->  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( ( ( `' F `  z )  -  C
)  /  ( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) )  =  ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) )
165164oveq1d 6311 . . 3  |-  ( ph  ->  ( ( z  e.  ( Y  \  {
( F `  C
) } )  |->  ( ( ( `' F `  z )  -  C
)  /  ( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) ) lim CC  ( F `  C )
)  =  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) )
166156, 165eleqtrd 2547 . 2  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) )
167 eqid 2457 . . 3  |-  ( z  e.  ( Y  \  { ( F `  C ) } ) 
|->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `
 C ) ) )  /  ( z  -  ( F `  C ) ) ) )
16823, 35fssd 5746 . . 3  |-  ( ph  ->  `' F : Y --> CC )
1696, 7, 167, 11, 168, 43eldv 22428 . 2  |-  ( ph  ->  ( ( F `  C ) ( S  _D  `' F ) ( 1  /  (
( S  _D  F
) `  C )
)  <->  ( ( F `
 C )  e.  ( ( int `  K
) `  Y )  /\  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) ) ) )
17020, 166, 169mpbir2and 922 1  |-  ( ph  ->  ( F `  C
) ( S  _D  `' F ) ( 1  /  ( ( S  _D  F ) `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652    \ cdif 3468    C_ wss 3471   {csn 4032   {cpr 4034   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   dom cdm 5008   ran crn 5009    |` cres 5010    o. ccom 5012   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    - cmin 9824    / cdiv 10227   ↾t crest 14838   TopOpenctopn 14839  ℂfldccnfld 18547   Topctop 19521  TopOnctopon 19522   intcnt 19645    Cn ccn 19852    CnP ccnp 19853    tX ctx 20187   -cn->ccncf 21506   lim CC climc 22392    _D cdv 22393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-icc 11561  df-fz 11698  df-fzo 11822  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-limc 22396  df-dv 22397
This theorem is referenced by:  dvcnv  22504
  Copyright terms: Public domain W3C validator