MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Unicode version

Theorem dvcnvlem 21292
Description: Lemma for dvcnvre 21335. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j  |-  J  =  ( TopOpen ` fld )
dvcnv.k  |-  K  =  ( Jt  S )
dvcnv.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvcnv.y  |-  ( ph  ->  Y  e.  K )
dvcnv.f  |-  ( ph  ->  F : X -1-1-onto-> Y )
dvcnv.i  |-  ( ph  ->  `' F  e.  ( Y -cn-> X ) )
dvcnv.d  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvcnv.z  |-  ( ph  ->  -.  0  e.  ran  ( S  _D  F
) )
dvcnv.c  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
dvcnvlem  |-  ( ph  ->  ( F `  C
) ( S  _D  `' F ) ( 1  /  ( ( S  _D  F ) `  C ) ) )

Proof of Theorem dvcnvlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5  |-  ( ph  ->  F : X -1-1-onto-> Y )
2 f1of 5631 . . . . 5  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : X --> Y )
4 dvcnv.c . . . 4  |-  ( ph  ->  C  e.  X )
53, 4ffvelrnd 5834 . . 3  |-  ( ph  ->  ( F `  C
)  e.  Y )
6 dvcnv.k . . . . . 6  |-  K  =  ( Jt  S )
7 dvcnv.j . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
87cnfldtopon 20206 . . . . . . 7  |-  J  e.  (TopOn `  CC )
9 dvcnv.s . . . . . . . 8  |-  ( ph  ->  S  e.  { RR ,  CC } )
10 recnprss 21223 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
119, 10syl 16 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
12 resttopon 18609 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
138, 11, 12sylancr 658 . . . . . 6  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
146, 13syl5eqel 2519 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  S ) )
15 topontop 18375 . . . . 5  |-  ( K  e.  (TopOn `  S
)  ->  K  e.  Top )
1614, 15syl 16 . . . 4  |-  ( ph  ->  K  e.  Top )
17 dvcnv.y . . . 4  |-  ( ph  ->  Y  e.  K )
18 isopn3i 18530 . . . 4  |-  ( ( K  e.  Top  /\  Y  e.  K )  ->  ( ( int `  K
) `  Y )  =  Y )
1916, 17, 18syl2anc 656 . . 3  |-  ( ph  ->  ( ( int `  K
) `  Y )  =  Y )
205, 19eleqtrrd 2512 . 2  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  K ) `
 Y ) )
21 f1ocnv 5643 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
22 f1of 5631 . . . . . . . . 9  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
231, 21, 223syl 20 . . . . . . . 8  |-  ( ph  ->  `' F : Y --> X )
24 eldifi 3468 . . . . . . . 8  |-  ( z  e.  ( Y  \  { ( F `  C ) } )  ->  z  e.  Y
)
25 ffvelrn 5831 . . . . . . . 8  |-  ( ( `' F : Y --> X  /\  z  e.  Y )  ->  ( `' F `  z )  e.  X
)
2623, 24, 25syl2an 474 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( `' F `  z )  e.  X
)
2726anim1i 565 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  {
( F `  C
) } ) )  /\  ( `' F `  z )  =/=  C
)  ->  ( ( `' F `  z )  e.  X  /\  ( `' F `  z )  =/=  C ) )
28 eldifsn 3990 . . . . . 6  |-  ( ( `' F `  z )  e.  ( X  \  { C } )  <->  ( ( `' F `  z )  e.  X  /\  ( `' F `  z )  =/=  C ) )
2927, 28sylibr 212 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  {
( F `  C
) } ) )  /\  ( `' F `  z )  =/=  C
)  ->  ( `' F `  z )  e.  ( X  \  { C } ) )
3029anasss 642 . . . 4  |-  ( (
ph  /\  ( z  e.  ( Y  \  {
( F `  C
) } )  /\  ( `' F `  z )  =/=  C ) )  ->  ( `' F `  z )  e.  ( X  \  { C } ) )
31 eldifi 3468 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  -> 
y  e.  X )
32 dvcnv.d . . . . . . . . . 10  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
33 dvbsss 21221 . . . . . . . . . 10  |-  dom  ( S  _D  F )  C_  S
3432, 33syl6eqssr 3397 . . . . . . . . 9  |-  ( ph  ->  X  C_  S )
3534, 11sstrd 3356 . . . . . . . 8  |-  ( ph  ->  X  C_  CC )
3635sselda 3346 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  y  e.  CC )
3731, 36sylan2 471 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  e.  CC )
3834, 4sseldd 3347 . . . . . . . 8  |-  ( ph  ->  C  e.  S )
3911, 38sseldd 3347 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
4039adantr 462 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  C  e.  CC )
4137, 40subcld 9709 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( y  -  C
)  e.  CC )
42 toponss 18378 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  S )  /\  Y  e.  K )  ->  Y  C_  S )
4314, 17, 42syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  Y  C_  S )
4443, 11sstrd 3356 . . . . . . . 8  |-  ( ph  ->  Y  C_  CC )
45 fss 5557 . . . . . . . 8  |-  ( ( F : X --> Y  /\  Y  C_  CC )  ->  F : X --> CC )
463, 44, 45syl2anc 656 . . . . . . 7  |-  ( ph  ->  F : X --> CC )
47 ffvelrn 5831 . . . . . . 7  |-  ( ( F : X --> CC  /\  y  e.  X )  ->  ( F `  y
)  e.  CC )
4846, 31, 47syl2an 474 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( F `  y
)  e.  CC )
4944, 5sseldd 3347 . . . . . . 7  |-  ( ph  ->  ( F `  C
)  e.  CC )
5049adantr 462 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( F `  C
)  e.  CC )
5148, 50subcld 9709 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  -  ( F `  C )
)  e.  CC )
52 eldifsni 3991 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  -> 
y  =/=  C )
5352adantl 463 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  =/=  C )
5448, 50subeq0ad 9719 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =  0  <->  ( F `  y )  =  ( F `  C ) ) )
55 f1of1 5630 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
561, 55syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : X -1-1-> Y
)
5756adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  F : X -1-1-> Y )
5831adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
y  e.  X )
594adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  ->  C  e.  X )
60 f1fveq 5964 . . . . . . . . 9  |-  ( ( F : X -1-1-> Y  /\  ( y  e.  X  /\  C  e.  X
) )  ->  (
( F `  y
)  =  ( F `
 C )  <->  y  =  C ) )
6157, 58, 59, 60syl12anc 1211 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  =  ( F `  C )  <-> 
y  =  C ) )
6254, 61bitrd 253 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =  0  <->  y  =  C ) )
6362necon3bid 2635 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  =/=  0  <->  y  =/=  C ) )
6453, 63mpbird 232 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( F `  y )  -  ( F `  C )
)  =/=  0 )
6541, 51, 64divcld 10097 . . . 4  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( y  -  C )  /  (
( F `  y
)  -  ( F `
 C ) ) )  e.  CC )
66 limcresi 21204 . . . . . 6  |-  ( `' F lim CC  ( F `
 C ) ) 
C_  ( ( `' F  |`  ( Y  \  { ( F `  C ) } ) ) lim CC  ( F `
 C ) )
6723feqmptd 5734 . . . . . . . . 9  |-  ( ph  ->  `' F  =  (
z  e.  Y  |->  ( `' F `  z ) ) )
6867reseq1d 5098 . . . . . . . 8  |-  ( ph  ->  ( `' F  |`  ( Y  \  { ( F `  C ) } ) )  =  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) ) )
69 difss 3473 . . . . . . . . 9  |-  ( Y 
\  { ( F `
 C ) } )  C_  Y
70 resmpt 5146 . . . . . . . . 9  |-  ( ( Y  \  { ( F `  C ) } )  C_  Y  ->  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( `' F `  z ) ) )
7169, 70ax-mp 5 . . . . . . . 8  |-  ( ( z  e.  Y  |->  ( `' F `  z ) )  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } ) 
|->  ( `' F `  z ) )
7268, 71syl6eq 2483 . . . . . . 7  |-  ( ph  ->  ( `' F  |`  ( Y  \  { ( F `  C ) } ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( `' F `  z ) ) )
7372oveq1d 6097 . . . . . 6  |-  ( ph  ->  ( ( `' F  |`  ( Y  \  {
( F `  C
) } ) ) lim
CC  ( F `  C ) )  =  ( ( z  e.  ( Y  \  {
( F `  C
) } )  |->  ( `' F `  z ) ) lim CC  ( F `
 C ) ) )
7466, 73syl5sseq 3394 . . . . 5  |-  ( ph  ->  ( `' F lim CC  ( F `  C ) )  C_  ( (
z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( `' F `  z ) ) lim CC  ( F `  C ) ) )
75 f1ocnvfv1 5972 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  C  e.  X )  ->  ( `' F `  ( F `  C ) )  =  C )
761, 4, 75syl2anc 656 . . . . . 6  |-  ( ph  ->  ( `' F `  ( F `  C ) )  =  C )
77 dvcnv.i . . . . . . 7  |-  ( ph  ->  `' F  e.  ( Y -cn-> X ) )
7877, 5cnlimci 21208 . . . . . 6  |-  ( ph  ->  ( `' F `  ( F `  C ) )  e.  ( `' F lim CC  ( F `
 C ) ) )
7976, 78eqeltrrd 2510 . . . . 5  |-  ( ph  ->  C  e.  ( `' F lim CC  ( F `
 C ) ) )
8074, 79sseldd 3347 . . . 4  |-  ( ph  ->  C  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( `' F `  z ) ) lim CC  ( F `  C ) ) )
8146, 35, 4dvlem 21215 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  e.  CC )
8237, 40, 53subne0d 9718 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( y  -  C
)  =/=  0 )
8351, 41, 64, 82divne0d 10113 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  =/=  0 )
84 eldifsn 3990 . . . . . . . 8  |-  ( ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) )  e.  ( CC  \  { 0 } )  <-> 
( ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) )  e.  CC  /\  ( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  =/=  0 ) )
8581, 83, 84sylanbrc 659 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) )  e.  ( CC  \  { 0 } ) )
86 eqid 2435 . . . . . . 7  |-  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )
8785, 86fmptd 5857 . . . . . 6  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) : ( X  \  { C } ) --> ( CC  \  { 0 } ) )
88 difss 3473 . . . . . . 7  |-  ( CC 
\  { 0 } )  C_  CC
8988a1i 11 . . . . . 6  |-  ( ph  ->  ( CC  \  {
0 } )  C_  CC )
90 eqid 2435 . . . . . 6  |-  ( Jt  ( CC  \  { 0 } ) )  =  ( Jt  ( CC  \  { 0 } ) )
914, 32eleqtrrd 2512 . . . . . . . . 9  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
92 dvfg 21225 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
93 ffun 5551 . . . . . . . . . 10  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
94 funfvbrb 5806 . . . . . . . . . 10  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
959, 92, 93, 944syl 21 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
9691, 95mpbid 210 . . . . . . . 8  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
976, 7, 86, 11, 46, 34eldv 21217 . . . . . . . 8  |-  ( ph  ->  ( C ( S  _D  F ) ( ( S  _D  F
) `  C )  <->  ( C  e.  ( ( int `  K ) `
 X )  /\  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) ) ) )
9896, 97mpbid 210 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( ( int `  K
) `  X )  /\  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) ) )
9998simprd 460 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) lim CC  C ) )
100 resttopon 18609 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  CC )  /\  ( CC  \  { 0 } )  C_  CC )  ->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1018, 88, 100mp2an 667 . . . . . . . . 9  |-  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) )
102101a1i 11 . . . . . . . 8  |-  ( ph  ->  ( Jt  ( CC  \  { 0 } ) )  e.  (TopOn `  ( CC  \  { 0 } ) ) )
1038a1i 11 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  CC ) )
104 1cnd 9392 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
105102, 103, 104cnmptc 19079 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  1 )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J ) )
106102cnmptid 19078 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  x )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  ( Jt  ( CC  \  { 0 } ) ) ) )
1077, 90divcn 20288 . . . . . . . . 9  |-  /  e.  ( ( J  tX  ( Jt  ( CC  \  { 0 } ) ) )  Cn  J
)
108107a1i 11 . . . . . . . 8  |-  ( ph  ->  /  e.  ( ( J  tX  ( Jt  ( CC  \  { 0 } ) ) )  Cn  J ) )
109102, 105, 106, 108cnmpt12f 19083 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J ) )
1109, 92syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
11132feq2d 5537 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
112110, 111mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
113112, 4ffvelrnd 5834 . . . . . . . 8  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  CC )
114 ffn 5549 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
115110, 114syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
116 fnfvelrn 5830 . . . . . . . . . 10  |-  ( ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  C  e.  dom  ( S  _D  F ) )  ->  ( ( S  _D  F ) `  C )  e.  ran  ( S  _D  F
) )
117115, 91, 116syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ran  ( S  _D  F ) )
118 dvcnv.z . . . . . . . . 9  |-  ( ph  ->  -.  0  e.  ran  ( S  _D  F
) )
119 nelne2 2694 . . . . . . . . 9  |-  ( ( ( ( S  _D  F ) `  C
)  e.  ran  ( S  _D  F )  /\  -.  0  e.  ran  ( S  _D  F
) )  ->  (
( S  _D  F
) `  C )  =/=  0 )
120117, 118, 119syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  =/=  0 )
121 eldifsn 3990 . . . . . . . 8  |-  ( ( ( S  _D  F
) `  C )  e.  ( CC  \  {
0 } )  <->  ( (
( S  _D  F
) `  C )  e.  CC  /\  ( ( S  _D  F ) `
 C )  =/=  0 ) )
122113, 120, 121sylanbrc 659 . . . . . . 7  |-  ( ph  ->  ( ( S  _D  F ) `  C
)  e.  ( CC 
\  { 0 } ) )
123101toponunii 18381 . . . . . . . 8  |-  ( CC 
\  { 0 } )  =  U. ( Jt  ( CC  \  { 0 } ) )
124123cncnpi 18726 . . . . . . 7  |-  ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( Jt  ( CC  \  { 0 } ) )  Cn  J )  /\  (
( S  _D  F
) `  C )  e.  ( CC  \  {
0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  e.  ( ( ( Jt  ( CC  \  { 0 } ) )  CnP  J ) `
 ( ( S  _D  F ) `  C ) ) )
125109, 122, 124syl2anc 656 . . . . . 6  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  e.  ( ( ( Jt  ( CC  \  {
0 } ) )  CnP  J ) `  ( ( S  _D  F ) `  C
) ) )
12687, 89, 7, 90, 99, 125limccnp 21210 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  e.  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) ) lim CC  C ) )
127 oveq2 6090 . . . . . . 7  |-  ( x  =  ( ( S  _D  F ) `  C )  ->  (
1  /  x )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
128 eqid 2435 . . . . . . 7  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( 1  /  x ) )
129 ovex 6107 . . . . . . 7  |-  ( 1  /  ( ( S  _D  F ) `  C ) )  e. 
_V
130127, 128, 129fvmpt 5764 . . . . . 6  |-  ( ( ( S  _D  F
) `  C )  e.  ( CC  \  {
0 } )  -> 
( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
131122, 130syl 16 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) `  ( ( S  _D  F ) `
 C ) )  =  ( 1  / 
( ( S  _D  F ) `  C
) ) )
132 eqidd 2436 . . . . . . . 8  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y
)  -  ( F `
 C ) )  /  ( y  -  C ) ) ) )
133 eqidd 2436 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  /  x ) )  =  ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) ) )
134 oveq2 6090 . . . . . . . 8  |-  ( x  =  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) )  ->  (
1  /  x )  =  ( 1  / 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) ) ) )
13585, 132, 133, 134fmptco 5865 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) ) )  =  ( y  e.  ( X 
\  { C }
)  |->  ( 1  / 
( ( ( F `
 y )  -  ( F `  C ) )  /  ( y  -  C ) ) ) ) )
13651, 41, 64, 82recdivd 10114 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X  \  { C } ) )  -> 
( 1  /  (
( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) )  =  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) )
137136mpteq2dva 4368 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( X  \  { C } )  |->  ( 1  /  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) )  =  ( y  e.  ( X  \  { C } )  |->  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) ) )
138135, 137eqtrd 2467 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( CC  \  {
0 } )  |->  ( 1  /  x ) )  o.  ( y  e.  ( X  \  { C } )  |->  ( ( ( F `  y )  -  ( F `  C )
)  /  ( y  -  C ) ) ) )  =  ( y  e.  ( X 
\  { C }
)  |->  ( ( y  -  C )  / 
( ( F `  y )  -  ( F `  C )
) ) ) )
139138oveq1d 6097 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  x
) )  o.  (
y  e.  ( X 
\  { C }
)  |->  ( ( ( F `  y )  -  ( F `  C ) )  / 
( y  -  C
) ) ) ) lim
CC  C )  =  ( ( y  e.  ( X  \  { C } )  |->  ( ( y  -  C )  /  ( ( F `
 y )  -  ( F `  C ) ) ) ) lim CC  C ) )
140126, 131, 1393eltr3d 2515 . . . 4  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( y  e.  ( X 
\  { C }
)  |->  ( ( y  -  C )  / 
( ( F `  y )  -  ( F `  C )
) ) ) lim CC  C ) )
141 oveq1 6089 . . . . 5  |-  ( y  =  ( `' F `  z )  ->  (
y  -  C )  =  ( ( `' F `  z )  -  C ) )
142 fveq2 5681 . . . . . 6  |-  ( y  =  ( `' F `  z )  ->  ( F `  y )  =  ( F `  ( `' F `  z ) ) )
143142oveq1d 6097 . . . . 5  |-  ( y  =  ( `' F `  z )  ->  (
( F `  y
)  -  ( F `
 C ) )  =  ( ( F `
 ( `' F `  z ) )  -  ( F `  C ) ) )
144141, 143oveq12d 6100 . . . 4  |-  ( y  =  ( `' F `  z )  ->  (
( y  -  C
)  /  ( ( F `  y )  -  ( F `  C ) ) )  =  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) )
145 eldifsni 3991 . . . . . . . . 9  |-  ( z  e.  ( Y  \  { ( F `  C ) } )  ->  z  =/=  ( F `  C )
)
146145adantl 463 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
z  =/=  ( F `
 C ) )
147146necomd 2687 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( F `  C
)  =/=  z )
1481adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  F : X -1-1-onto-> Y )
1494adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  C  e.  X )
15024adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
z  e.  Y )
151 f1ocnvfvb 5975 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  C  e.  X  /\  z  e.  Y )  ->  ( ( F `  C )  =  z  <-> 
( `' F `  z )  =  C ) )
152148, 149, 150, 151syl3anc 1213 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  C )  =  z  <-> 
( `' F `  z )  =  C ) )
153152necon3abid 2633 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  C )  =/=  z  <->  -.  ( `' F `  z )  =  C ) )
154147, 153mpbid 210 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  -.  ( `' F `  z )  =  C )
155154pm2.21d 106 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( `' F `  z )  =  C  ->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( 1  /  ( ( S  _D  F ) `  C ) ) ) )
156155impr 616 . . . 4  |-  ( (
ph  /\  ( z  e.  ( Y  \  {
( F `  C
) } )  /\  ( `' F `  z )  =  C ) )  ->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( 1  /  ( ( S  _D  F ) `  C ) ) )
15730, 65, 80, 140, 144, 156limcco 21212 . . 3  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) ) lim CC  ( F `  C )
) )
15876eqcomd 2440 . . . . . . . 8  |-  ( ph  ->  C  =  ( `' F `  ( F `
 C ) ) )
159158adantr 462 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  ->  C  =  ( `' F `  ( F `  C ) ) )
160159oveq2d 6098 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( `' F `  z )  -  C
)  =  ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) ) )
161 f1ocnvfv2 5973 . . . . . . . 8  |-  ( ( F : X -1-1-onto-> Y  /\  z  e.  Y )  ->  ( F `  ( `' F `  z ) )  =  z )
1621, 24, 161syl2an 474 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( F `  ( `' F `  z ) )  =  z )
163162oveq1d 6097 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) )  =  ( z  -  ( F `  C ) ) )
164160, 163oveq12d 6100 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { ( F `  C ) } ) )  -> 
( ( ( `' F `  z )  -  C )  / 
( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) )  =  ( ( ( `' F `  z )  -  ( `' F `  ( F `
 C ) ) )  /  ( z  -  ( F `  C ) ) ) )
165164mpteq2dva 4368 . . . 4  |-  ( ph  ->  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( ( ( `' F `  z )  -  C
)  /  ( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) )  =  ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) )
166165oveq1d 6097 . . 3  |-  ( ph  ->  ( ( z  e.  ( Y  \  {
( F `  C
) } )  |->  ( ( ( `' F `  z )  -  C
)  /  ( ( F `  ( `' F `  z ) )  -  ( F `
 C ) ) ) ) lim CC  ( F `  C )
)  =  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) )
167157, 166eleqtrd 2511 . 2  |-  ( ph  ->  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) )
168 eqid 2435 . . 3  |-  ( z  e.  ( Y  \  { ( F `  C ) } ) 
|->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) )  =  ( z  e.  ( Y  \  { ( F `  C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `
 C ) ) )  /  ( z  -  ( F `  C ) ) ) )
169 fss 5557 . . . 4  |-  ( ( `' F : Y --> X  /\  X  C_  CC )  ->  `' F : Y --> CC )
17023, 35, 169syl2anc 656 . . 3  |-  ( ph  ->  `' F : Y --> CC )
1716, 7, 168, 11, 170, 43eldv 21217 . 2  |-  ( ph  ->  ( ( F `  C ) ( S  _D  `' F ) ( 1  /  (
( S  _D  F
) `  C )
)  <->  ( ( F `
 C )  e.  ( ( int `  K
) `  Y )  /\  ( 1  /  (
( S  _D  F
) `  C )
)  e.  ( ( z  e.  ( Y 
\  { ( F `
 C ) } )  |->  ( ( ( `' F `  z )  -  ( `' F `  ( F `  C
) ) )  / 
( z  -  ( F `  C )
) ) ) lim CC  ( F `  C ) ) ) ) )
17220, 167, 171mpbir2and 908 1  |-  ( ph  ->  ( F `  C
) ( S  _D  `' F ) ( 1  /  ( ( S  _D  F ) `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1757    =/= wne 2598    \ cdif 3315    C_ wss 3318   {csn 3867   {cpr 3869   class class class wbr 4282    e. cmpt 4340   `'ccnv 4828   dom cdm 4829   ran crn 4830    |` cres 4831    o. ccom 4833   Fun wfun 5402    Fn wfn 5403   -->wf 5404   -1-1->wf1 5405   -1-1-onto->wf1o 5407   ` cfv 5408  (class class class)co 6082   CCcc 9270   RRcr 9271   0cc0 9272   1c1 9273    - cmin 9585    / cdiv 9983   ↾t crest 14344   TopOpenctopn 14345  ℂfldccnfld 17664   Topctop 18342  TopOnctopon 18343   intcnt 18465    Cn ccn 18672    CnP ccnp 18673    tX ctx 18977   -cn->ccncf 20296   lim CC climc 21181    _D cdv 21182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-icc 11297  df-fz 11427  df-fzo 11535  df-seq 11793  df-exp 11852  df-hash 12090  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-limc 21185  df-dv 21186
This theorem is referenced by:  dvcnv  21293
  Copyright terms: Public domain W3C validator