MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Unicode version

Theorem dvcnp2 21353
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j  |-  J  =  ( Kt  A )
dvcnp.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvcnp2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)

Proof of Theorem dvcnp2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5031 . . 3  |-  ( B  e.  dom  ( S  _D  F )  -> 
( B  e.  dom  ( S  _D  F
)  <->  E. y  B ( S  _D  F ) y ) )
21ibi 241 . 2  |-  ( B  e.  dom  ( S  _D  F )  ->  E. y  B ( S  _D  F ) y )
3 simpl2 987 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F : A --> CC )
43ffvelrnda 5840 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
5 dvcnp.k . . . . . . . . . . . . . . 15  |-  K  =  ( TopOpen ` fld )
65cnfldtop 20322 . . . . . . . . . . . . . 14  |-  K  e. 
Top
7 simpl1 986 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  C_  CC )
8 cnex 9359 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
9 ssexg 4435 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
107, 8, 9sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  e.  _V )
11 resttop 18723 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  S  e.  _V )  ->  ( Kt  S )  e.  Top )
126, 10, 11sylancr 658 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  Top )
13 simpl3 988 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  S
)
145cnfldtopon 20321 . . . . . . . . . . . . . . . 16  |-  K  e.  (TopOn `  CC )
15 resttopon 18724 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
1614, 7, 15sylancr 658 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( Kt  S )  e.  (TopOn `  S
) )
17 toponuni 18491 . . . . . . . . . . . . . . 15  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
1816, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  S  =  U. ( Kt  S ) )
1913, 18sseqtrd 3389 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  U. ( Kt  S ) )
20 eqid 2441 . . . . . . . . . . . . . 14  |-  U. ( Kt  S )  =  U. ( Kt  S )
2120ntrss2 18620 . . . . . . . . . . . . 13  |-  ( ( ( Kt  S )  e.  Top  /\  A  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  A )  C_  A
)
2212, 19, 21syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( int `  ( Kt  S ) ) `  A )  C_  A
)
23 eqid 2441 . . . . . . . . . . . . . 14  |-  ( Kt  S )  =  ( Kt  S )
24 eqid 2441 . . . . . . . . . . . . . 14  |-  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) ) )
25 simp1 983 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
26 simp2 984 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
27 simp3 985 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
2823, 5, 24, 25, 26, 27eldv 21332 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  <->  ( B  e.  ( ( int `  ( Kt  S ) ) `  A )  /\  y  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) ) ) )
2928simprbda 620 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  ( ( int `  ( Kt  S ) ) `  A ) )
3022, 29sseldd 3354 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  A
)
313, 30ffvelrnd 5841 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  CC )
3231adantr 462 . . . . . . . . 9  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
334, 32subcld 9715 . . . . . . . 8  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( F `  z
)  -  ( F `
 B ) )  e.  CC )
34 ssid 3372 . . . . . . . . 9  |-  CC  C_  CC
3534a1i 11 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  CC  C_  CC )
36 txtopon 19123 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
3714, 14, 36mp2an 667 . . . . . . . . . 10  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponunii 18496 . . . . . . . . . . 11  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
3938restid 14368 . . . . . . . . . 10  |-  ( ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) )  ->  ( ( K 
tX  K )t  ( CC 
X.  CC ) )  =  ( K  tX  K ) )
4037, 39ax-mp 5 . . . . . . . . 9  |-  ( ( K  tX  K )t  ( CC  X.  CC ) )  =  ( K 
tX  K )
4140eqcomi 2445 . . . . . . . 8  |-  ( K 
tX  K )  =  ( ( K  tX  K )t  ( CC  X.  CC ) )
4213, 7sstrd 3363 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  A  C_  CC )
433, 42, 30dvlem 21330 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) )  e.  CC )
4442ssdifssd 3491 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( A  \  { B } )  C_  CC )
4544sselda 3353 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  CC )
4642, 30sseldd 3354 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  B  e.  CC )
4746adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  ->  B  e.  CC )
4845, 47subcld 9715 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( z  -  B
)  e.  CC )
4928simplbda 621 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) )
50 limcresi 21319 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) ) lim CC  B )
51 difss 3480 . . . . . . . . . . . . . . 15  |-  ( A 
\  { B }
)  C_  A
52 resmpt 5153 . . . . . . . . . . . . . . 15  |-  ( ( A  \  { B } )  C_  A  ->  ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  |->  ( z  -  B ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) )
5453oveq1i 6100 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  A  |->  ( z  -  B
) )  |`  ( A  \  { B }
) ) lim CC  B
)  =  ( ( z  e.  ( A 
\  { B }
)  |->  ( z  -  B ) ) lim CC  B )
5550, 54sseqtri 3385 . . . . . . . . . . . 12  |-  ( ( z  e.  A  |->  ( z  -  B ) ) lim CC  B ) 
C_  ( ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) lim CC  B )
5646subidd 9703 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  =  0 )
575subcn 20401 . . . . . . . . . . . . . . . 16  |-  -  e.  ( ( K  tX  K )  Cn  K
)
5857a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  -  e.  ( ( K  tX  K
)  Cn  K ) )
59 cncfmptid 20447 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  z )  e.  ( A
-cn-> CC ) )
6042, 34, 59sylancl 657 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  z )  e.  ( A -cn-> CC ) )
61 cncfmptc 20446 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  B )  e.  ( A
-cn-> CC ) )
6246, 42, 35, 61syl3anc 1213 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  B )  e.  ( A -cn-> CC ) )
635, 58, 60, 62cncfmpt2f 20449 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( z  -  B ) )  e.  ( A -cn-> CC ) )
64 oveq1 6097 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
z  -  B )  =  ( B  -  B ) )
6563, 30, 64cnmptlimc 21324 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( B  -  B )  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6656, 65eqeltrrd 2516 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( z  -  B
) ) lim CC  B
) )
6755, 66sseldi 3351 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  ( A  \  { B } )  |->  ( z  -  B ) ) lim
CC  B ) )
685mulcn 20402 . . . . . . . . . . . 12  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
6925, 26, 27dvcl 21333 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  y  e.  CC )
70 0cn 9374 . . . . . . . . . . . . 13  |-  0  e.  CC
71 opelxpi 4867 . . . . . . . . . . . . 13  |-  ( ( y  e.  CC  /\  0  e.  CC )  -> 
<. y ,  0 >.  e.  ( CC  X.  CC ) )
7269, 70, 71sylancl 657 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. y ,  0
>.  e.  ( CC  X.  CC ) )
7338cncnpi 18841 . . . . . . . . . . . 12  |-  ( (  x.  e.  ( ( K  tX  K )  Cn  K )  /\  <.
y ,  0 >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. y ,  0 >. )
)
7468, 72, 73sylancr 658 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  x.  e.  ( ( ( K  tX  K )  CnP  K
) `  <. y ,  0 >. ) )
7543, 48, 35, 35, 5, 41, 49, 67, 74limccnp2 21326 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B ) )
7669mul01d 9564 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( y  x.  0 )  =  0 )
773adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  ->  F : A --> CC )
78 simpr 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  ( A 
\  { B }
) )
7951, 78sseldi 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  A )
8077, 79ffvelrnd 5841 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  z
)  e.  CC )
8131adantr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  B
)  e.  CC )
8280, 81subcld 9715 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  -  ( F `  B )
)  e.  CC )
83 eldifsni 3998 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( A  \  { B } )  -> 
z  =/=  B )
8483adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
z  =/=  B )
8545, 47, 84subne0d 9724 . . . . . . . . . . . . 13  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( z  -  B
)  =/=  0 )
8682, 48, 85divcan1d 10104 . . . . . . . . . . . 12  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) )  x.  (
z  -  B ) )  =  ( ( F `  z )  -  ( F `  B ) ) )
8786mpteq2dva 4375 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `  z )  -  ( F `  B )
)  /  ( z  -  B ) )  x.  ( z  -  B ) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) )
8887oveq1d 6105 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  ( A  \  { B } )  |->  ( ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) )  x.  ( z  -  B ) ) ) lim
CC  B )  =  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
8975, 76, 883eltr3d 2521 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
90 eqid 2441 . . . . . . . . . . . 12  |-  ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  =  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )
9133, 90fmptd 5864 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) ) : A --> CC )
9291limcdif 21310 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) )  |`  ( A  \  { B } ) ) lim CC  B ) )
93 resmpt 5153 . . . . . . . . . . . 12  |-  ( ( A  \  { B } )  C_  A  ->  ( ( z  e.  A  |->  ( ( F `
 z )  -  ( F `  B ) ) )  |`  ( A  \  { B }
) )  =  ( z  e.  ( A 
\  { B }
)  |->  ( ( F `
 z )  -  ( F `  B ) ) ) )
9451, 93ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  A  |->  ( ( F `  z
)  -  ( F `
 B ) ) )  |`  ( A  \  { B } ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( F `  z
)  -  ( F `
 B ) ) )
9594oveq1i 6100 . . . . . . . . . 10  |-  ( ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) )  |`  ( A  \  { B }
) ) lim CC  B
)  =  ( ( z  e.  ( A 
\  { B }
)  |->  ( ( F `
 z )  -  ( F `  B ) ) ) lim CC  B
)
9692, 95syl6eq 2489 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B )  =  ( ( z  e.  ( A  \  { B } )  |->  ( ( F `  z )  -  ( F `  B ) ) ) lim
CC  B ) )
9789, 96eleqtrrd 2518 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  0  e.  ( ( z  e.  A  |->  ( ( F `  z )  -  ( F `  B )
) ) lim CC  B
) )
98 cncfmptc 20446 . . . . . . . . . 10  |-  ( ( ( F `  B
)  e.  CC  /\  A  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )
9931, 42, 35, 98syl3anc 1213 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> CC ) )
100 eqidd 2442 . . . . . . . . 9  |-  ( z  =  B  ->  ( F `  B )  =  ( F `  B ) )
10199, 30, 100cnmptlimc 21324 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( ( z  e.  A  |->  ( F `  B
) ) lim CC  B
) )
1025addcn 20400 . . . . . . . . 9  |-  +  e.  ( ( K  tX  K )  Cn  K
)
103 opelxpi 4867 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  ( F `  B )  e.  CC )  ->  <. 0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )
10470, 31, 103sylancr 658 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  <. 0 ,  ( F `  B )
>.  e.  ( CC  X.  CC ) )
10538cncnpi 18841 . . . . . . . . 9  |-  ( (  +  e.  ( ( K  tX  K )  Cn  K )  /\  <.
0 ,  ( F `
 B ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( K 
tX  K )  CnP 
K ) `  <. 0 ,  ( F `  B ) >. )
)
106102, 104, 105sylancr 658 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  +  e.  ( ( ( K  tX  K )  CnP  K
) `  <. 0 ,  ( F `  B
) >. ) )
10733, 32, 35, 35, 5, 41, 97, 101, 106limccnp2 21326 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  e.  ( ( z  e.  A  |->  ( ( ( F `
 z )  -  ( F `  B ) )  +  ( F `
 B ) ) ) lim CC  B ) )
10831addid2d 9566 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( 0  +  ( F `  B
) )  =  ( F `  B ) )
1094, 32npcand 9719 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S
)  /\  B ( S  _D  F ) y )  /\  z  e.  A )  ->  (
( ( F `  z )  -  ( F `  B )
)  +  ( F `
 B ) )  =  ( F `  z ) )
110109mpteq2dva 4375 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  ( z  e.  A  |->  ( F `  z
) ) )
1113feqmptd 5741 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
112110, 111eqtr4d 2476 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( z  e.  A  |->  ( ( ( F `  z )  -  ( F `  B ) )  +  ( F `  B
) ) )  =  F )
113112oveq1d 6105 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( ( z  e.  A  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  +  ( F `  B ) ) ) lim
CC  B )  =  ( F lim CC  B
) )
114107, 108, 1133eltr3d 2521 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F `  B )  e.  ( F lim CC  B ) )
115 dvcnp.j . . . . . . . 8  |-  J  =  ( Kt  A )
1165, 115cnplimc 21321 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )
11742, 30, 116syl2anc 656 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
1183, 114, 117mpbir2and 908 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
119118ex 434 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K ) `  B ) ) )
120119exlimdv 1695 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( E. y  B ( S  _D  F ) y  ->  F  e.  ( ( J  CnP  K
) `  B )
) )
121120imp 429 . 2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  E. y  B ( S  _D  F ) y )  ->  F  e.  ( ( J  CnP  K ) `  B ) )
1222, 121sylan2 471 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K
) `  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   _Vcvv 2970    \ cdif 3322    C_ wss 3325   {csn 3874   <.cop 3880   U.cuni 4088   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   dom cdm 4836    |` cres 4838   -->wf 5411   ` cfv 5415  (class class class)co 6090   CCcc 9276   0cc0 9278    + caddc 9281    x. cmul 9283    - cmin 9591    / cdiv 9989   ↾t crest 14355   TopOpenctopn 14356  ℂfldccnfld 17777   Topctop 18457  TopOnctopon 18458   intcnt 18580    Cn ccn 18787    CnP ccnp 18788    tX ctx 19092   -cn->ccncf 20411   lim CC climc 21296    _D cdv 21297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-ntr 18583  df-cn 18790  df-cnp 18791  df-tx 19094  df-hmeo 19287  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301
This theorem is referenced by:  dvcn  21354  dvmulbr  21372  dvcobr  21379
  Copyright terms: Public domain W3C validator