MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcn Structured version   Unicode version

Theorem dvcn 21236
Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
dvcn  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  F  e.  ( A -cn-> CC ) )

Proof of Theorem dvcn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 985 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  F : A --> CC )
2 eqid 2433 . . . . . 6  |-  ( (
TopOpen ` fld )t  A )  =  ( ( TopOpen ` fld )t  A )
3 eqid 2433 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
42, 3dvcnp2 21235 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  x  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( ( ( TopOpen ` fld )t  A
)  CnP  ( TopOpen ` fld )
) `  x )
)
54ralrimiva 2789 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A. x  e.  dom  ( S  _D  F ) F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
6 raleq 2907 . . . . 5  |-  ( dom  ( S  _D  F
)  =  A  -> 
( A. x  e. 
dom  ( S  _D  F ) F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
)  <->  A. x  e.  A  F  e.  ( (
( ( TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) )
76biimpd 207 . . . 4  |-  ( dom  ( S  _D  F
)  =  A  -> 
( A. x  e. 
dom  ( S  _D  F ) F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
)  ->  A. x  e.  A  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) )
85, 7mpan9 466 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  A. x  e.  A  F  e.  ( (
( ( TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
93cnfldtopon 20203 . . . . 5  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
10 simpl3 986 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  A  C_  S
)
11 simpl1 984 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  S  C_  CC )
1210, 11sstrd 3354 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  A  C_  CC )
13 resttopon 18606 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  (
( TopOpen ` fld )t  A )  e.  (TopOn `  A ) )
149, 12, 13sylancr 656 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  ( ( TopOpen ` fld )t  A
)  e.  (TopOn `  A ) )
15 cncnp 18725 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  A )  e.  (TopOn `  A )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) )  <->  ( F : A --> CC  /\  A. x  e.  A  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) ) )
1614, 9, 15sylancl 655 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  ( F  e.  ( ( ( TopOpen ` fld )t  A
)  Cn  ( TopOpen ` fld )
)  <->  ( F : A
--> CC  /\  A. x  e.  A  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) ) )
171, 8, 16mpbir2and 906 . 2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  F  e.  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
18 ssid 3363 . . 3  |-  CC  C_  CC
199toponunii 18378 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
2019restid 14354 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
219, 20ax-mp 5 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
2221eqcomi 2437 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
233, 2, 22cncfcn 20326 . . 3  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  ( A -cn-> CC )  =  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
2412, 18, 23sylancl 655 . 2  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  ( A -cn-> CC )  =  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
2517, 24eleqtrrd 2510 1  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F
)  =  A )  ->  F  e.  ( A -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705    C_ wss 3316   dom cdm 4827   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267   ↾t crest 14341   TopOpenctopn 14342  ℂfldccnfld 17661  TopOnctopon 18340    Cn ccn 18669    CnP ccnp 18670   -cn->ccncf 20293    _D cdv 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-icc 11294  df-fz 11424  df-fzo 11532  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-ntr 18465  df-cn 18672  df-cnp 18673  df-tx 18976  df-hmeo 19169  df-xms 19736  df-ms 19737  df-tms 19738  df-cncf 20295  df-limc 21182  df-dv 21183
This theorem is referenced by:  cpnord  21250  dvlipcn  21307  dvlip2  21308  dvivthlem1  21321  lhop1lem  21326  dvfsumlem2  21340  itgsubstlem  21361  taylthlem2  21723  efcn  21792  pige3  21863  relogcn  21967  atancn  22215  lhe4.4ex1a  29445
  Copyright terms: Public domain W3C validator