MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbsss Structured version   Visualization version   Unicode version

Theorem dvbsss 22936
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
dvbsss  |-  dom  ( S  _D  F )  C_  S

Proof of Theorem dvbsss
Dummy variables  f 
s  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 22901 . . . . . . . . . . 11  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
21reldmmpt2 6426 . . . . . . . . . 10  |-  Rel  dom  _D
3 df-rel 4846 . . . . . . . . . 10  |-  ( Rel 
dom  _D  <->  dom  _D  C_  ( _V  X.  _V ) )
42, 3mpbi 213 . . . . . . . . 9  |-  dom  _D  C_  ( _V  X.  _V )
54sseli 3414 . . . . . . . 8  |-  ( <. S ,  F >.  e. 
dom  _D  ->  <. S ,  F >.  e.  ( _V 
X.  _V ) )
6 opelxp1 4872 . . . . . . . 8  |-  ( <. S ,  F >.  e.  ( _V  X.  _V )  ->  S  e.  _V )
75, 6syl 17 . . . . . . 7  |-  ( <. S ,  F >.  e. 
dom  _D  ->  S  e. 
_V )
8 opeq1 4158 . . . . . . . . . 10  |-  ( s  =  S  ->  <. s ,  F >.  =  <. S ,  F >. )
98eleq1d 2533 . . . . . . . . 9  |-  ( s  =  S  ->  ( <. s ,  F >.  e. 
dom  _D  <->  <. S ,  F >.  e.  dom  _D  )
)
10 eleq1 2537 . . . . . . . . . 10  |-  ( s  =  S  ->  (
s  e.  ~P CC  <->  S  e.  ~P CC ) )
11 oveq2 6316 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
1211eleq2d 2534 . . . . . . . . . 10  |-  ( s  =  S  ->  ( F  e.  ( CC  ^pm  s )  <->  F  e.  ( CC  ^pm  S ) ) )
1310, 12anbi12d 725 . . . . . . . . 9  |-  ( s  =  S  ->  (
( s  e.  ~P CC  /\  F  e.  ( CC  ^pm  s )
)  <->  ( S  e. 
~P CC  /\  F  e.  ( CC  ^pm  S
) ) ) )
149, 13imbi12d 327 . . . . . . . 8  |-  ( s  =  S  ->  (
( <. s ,  F >.  e.  dom  _D  ->  ( s  e.  ~P CC  /\  F  e.  ( CC 
^pm  s ) ) )  <->  ( <. S ,  F >.  e.  dom  _D  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm  S )
) ) ) )
151dmmpt2ssx 6877 . . . . . . . . . 10  |-  dom  _D  C_ 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )
1615sseli 3414 . . . . . . . . 9  |-  ( <.
s ,  F >.  e. 
dom  _D  ->  <. s ,  F >.  e.  U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) ) )
17 opeliunxp 4891 . . . . . . . . 9  |-  ( <.
s ,  F >.  e. 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )  <->  ( s  e.  ~P CC  /\  F  e.  ( CC  ^pm  s
) ) )
1816, 17sylib 201 . . . . . . . 8  |-  ( <.
s ,  F >.  e. 
dom  _D  ->  ( s  e.  ~P CC  /\  F  e.  ( CC  ^pm  s ) ) )
1914, 18vtoclg 3093 . . . . . . 7  |-  ( S  e.  _V  ->  ( <. S ,  F >.  e. 
dom  _D  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm 
S ) ) ) )
207, 19mpcom 36 . . . . . 6  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm 
S ) ) )
2120simpld 466 . . . . 5  |-  ( <. S ,  F >.  e. 
dom  _D  ->  S  e. 
~P CC )
2221elpwid 3952 . . . 4  |-  ( <. S ,  F >.  e. 
dom  _D  ->  S  C_  CC )
2320simprd 470 . . . . . 6  |-  ( <. S ,  F >.  e. 
dom  _D  ->  F  e.  ( CC  ^pm  S
) )
24 cnex 9638 . . . . . . 7  |-  CC  e.  _V
25 elpm2g 7506 . . . . . . 7  |-  ( ( CC  e.  _V  /\  S  e.  ~P CC )  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
2624, 21, 25sylancr 676 . . . . . 6  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
2723, 26mpbid 215 . . . . 5  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
2827simpld 466 . . . 4  |-  ( <. S ,  F >.  e. 
dom  _D  ->  F : dom  F --> CC )
2927simprd 470 . . . 4  |-  ( <. S ,  F >.  e. 
dom  _D  ->  dom  F  C_  S )
3022, 28, 29dvbss 22935 . . 3  |-  ( <. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  C_  dom  F )
3130, 29sstrd 3428 . 2  |-  ( <. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  C_  S )
32 df-ov 6311 . . . . . 6  |-  ( S  _D  F )  =  (  _D  `  <. S ,  F >. )
33 ndmfv 5903 . . . . . 6  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  (  _D 
`  <. S ,  F >. )  =  (/) )
3432, 33syl5eq 2517 . . . . 5  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( S  _D  F )  =  (/) )
3534dmeqd 5042 . . . 4  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  dom  (/) )
36 dm0 5054 . . . 4  |-  dom  (/)  =  (/)
3735, 36syl6eq 2521 . . 3  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  (/) )
38 0ss 3766 . . 3  |-  (/)  C_  S
3937, 38syl6eqss 3468 . 2  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  C_  S )
4031, 39pm2.61i 169 1  |-  dom  ( S  _D  F )  C_  S
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    \ cdif 3387    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   <.cop 3965   U_ciun 4269    |-> cmpt 4454    X. cxp 4837   dom cdm 4839   Rel wrel 4844   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^pm cpm 7491   CCcc 9555    - cmin 9880    / cdiv 10291   ↾t crest 15397   TopOpenctopn 15398  ℂfldccnfld 19047   intcnt 20109   lim CC climc 22896    _D cdv 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fi 7943  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-fz 11811  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-plusg 15281  df-mulr 15282  df-starv 15283  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-rest 15399  df-topn 15400  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-ntr 20112  df-cnp 20321  df-xms 21413  df-ms 21414  df-limc 22900  df-dv 22901
This theorem is referenced by:  dvaddf  22975  dvmulf  22976  dvcmulf  22978  dvcof  22981  dvmptres2  22995  dvmptcmul  22997  dvmptcj  23001  dvcnvlem  23007  dvcnv  23008  dvef  23011  dvcnvrelem1  23048  dvcnvrelem2  23049  dvcnvre  23050  ulmdvlem1  23434  ulmdvlem3  23436  ulmdv  23437  fperdvper  37887  dvmulcncf  37894  dvdivcncf  37896
  Copyright terms: Public domain W3C validator