MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvatan Structured version   Unicode version

Theorem dvatan 23010
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
atansopn.s  |-  S  =  { y  e.  CC  |  ( 1  +  ( y ^ 2 ) )  e.  D }
Assertion
Ref Expression
dvatan  |-  ( CC 
_D  (arctan  |`  S ) )  =  ( x  e.  S  |->  ( 1  /  ( 1  +  ( x ^ 2 ) ) ) )
Distinct variable groups:    x, y, D    x, S
Allowed substitution hint:    S( y)

Proof of Theorem dvatan
StepHypRef Expression
1 cnelprrecn 9584 . . . . 5  |-  CC  e.  { RR ,  CC }
21a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
3 ax-1cn 9549 . . . . . . 7  |-  1  e.  CC
4 ax-icn 9550 . . . . . . . 8  |-  _i  e.  CC
5 atansopn.d . . . . . . . . . . . 12  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
6 atansopn.s . . . . . . . . . . . 12  |-  S  =  { y  e.  CC  |  ( 1  +  ( y ^ 2 ) )  e.  D }
75, 6atansssdm 23008 . . . . . . . . . . 11  |-  S  C_  dom arctan
8 simpr 461 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  x  e.  S )
97, 8sseldi 3502 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  x  e.  dom arctan )
10 atandm2 22952 . . . . . . . . . 10  |-  ( x  e.  dom arctan  <->  ( x  e.  CC  /\  ( 1  -  ( _i  x.  x ) )  =/=  0  /\  ( 1  +  ( _i  x.  x ) )  =/=  0 ) )
119, 10sylib 196 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
x  e.  CC  /\  ( 1  -  (
_i  x.  x )
)  =/=  0  /\  ( 1  +  ( _i  x.  x ) )  =/=  0 ) )
1211simp1d 1008 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  x  e.  CC )
13 mulcl 9575 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  x.  x
)  e.  CC )
144, 12, 13sylancr 663 . . . . . . 7  |-  ( ( T.  /\  x  e.  S )  ->  (
_i  x.  x )  e.  CC )
15 subcl 9818 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  x
)  e.  CC )  ->  ( 1  -  ( _i  x.  x
) )  e.  CC )
163, 14, 15sylancr 663 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  -  ( _i  x.  x ) )  e.  CC )
1711simp2d 1009 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  -  ( _i  x.  x ) )  =/=  0 )
1816, 17logcld 22702 . . . . 5  |-  ( ( T.  /\  x  e.  S )  ->  ( log `  ( 1  -  ( _i  x.  x
) ) )  e.  CC )
19 addcl 9573 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  x
)  e.  CC )  ->  ( 1  +  ( _i  x.  x
) )  e.  CC )
203, 14, 19sylancr 663 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  +  ( _i  x.  x ) )  e.  CC )
2111simp3d 1010 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  +  ( _i  x.  x ) )  =/=  0 )
2220, 21logcld 22702 . . . . 5  |-  ( ( T.  /\  x  e.  S )  ->  ( log `  ( 1  +  ( _i  x.  x
) ) )  e.  CC )
2318, 22subcld 9929 . . . 4  |-  ( ( T.  /\  x  e.  S )  ->  (
( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) )  e.  CC )
24 ovex 6308 . . . . 5  |-  ( ( 2  /  _i )  /  ( 1  +  ( x ^ 2 ) ) )  e. 
_V
2524a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  S )  ->  (
( 2  /  _i )  /  ( 1  +  ( x ^ 2 ) ) )  e. 
_V )
26 ovex 6308 . . . . . . 7  |-  ( 1  /  ( x  +  _i ) )  e.  _V
2726a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( x  +  _i ) )  e.  _V )
285, 6atans2 23006 . . . . . . . . . 10  |-  ( x  e.  S  <->  ( x  e.  CC  /\  ( 1  -  ( _i  x.  x ) )  e.  D  /\  ( 1  +  ( _i  x.  x ) )  e.  D ) )
2928simp2bi 1012 . . . . . . . . 9  |-  ( x  e.  S  ->  (
1  -  ( _i  x.  x ) )  e.  D )
3029adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
1  -  ( _i  x.  x ) )  e.  D )
31 negex 9817 . . . . . . . . 9  |-  -u _i  e.  _V
3231a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  -u _i  e.  _V )
335logdmss 22767 . . . . . . . . . 10  |-  D  C_  ( CC  \  { 0 } )
34 simpr 461 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  D )  ->  y  e.  D )
3533, 34sseldi 3502 . . . . . . . . 9  |-  ( ( T.  /\  y  e.  D )  ->  y  e.  ( CC  \  {
0 } ) )
36 logf1o 22696 . . . . . . . . . . 11  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
37 f1of 5815 . . . . . . . . . . 11  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
3836, 37ax-mp 5 . . . . . . . . . 10  |-  log :
( CC  \  {
0 } ) --> ran 
log
3938ffvelrni 6019 . . . . . . . . 9  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( log `  y
)  e.  ran  log )
40 logrncn 22694 . . . . . . . . 9  |-  ( ( log `  y )  e.  ran  log  ->  ( log `  y )  e.  CC )
4135, 39, 403syl 20 . . . . . . . 8  |-  ( ( T.  /\  y  e.  D )  ->  ( log `  y )  e.  CC )
42 ovex 6308 . . . . . . . . 9  |-  ( 1  /  y )  e. 
_V
4342a1i 11 . . . . . . . 8  |-  ( ( T.  /\  y  e.  D )  ->  (
1  /  y )  e.  _V )
444a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  _i  e.  CC )
4544, 13sylan 471 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
_i  x.  x )  e.  CC )
463, 45, 15sylancr 663 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  -  ( _i  x.  x ) )  e.  CC )
4731a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  -u _i  e.  _V )
48 1cnd 9611 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
49 0cnd 9588 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  0  e.  CC )
50 1cnd 9611 . . . . . . . . . . . 12  |-  ( T. 
->  1  e.  CC )
512, 50dvmptc 22112 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  1 ) )  =  ( x  e.  CC  |->  0 ) )
524a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  _i  e.  CC )
53 simpr 461 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
542dvmptid 22111 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
552, 53, 48, 54, 44dvmptcmul 22118 . . . . . . . . . . . 12  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  ( _i  x.  1 ) ) )
564mulid1i 9597 . . . . . . . . . . . . 13  |-  ( _i  x.  1 )  =  _i
5756mpteq2i 4530 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  ( _i  x.  1 ) )  =  ( x  e.  CC  |->  _i )
5855, 57syl6eq 2524 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  _i ) )
592, 48, 49, 51, 45, 52, 58dvmptsub 22121 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( 0  -  _i ) ) )
60 df-neg 9807 . . . . . . . . . . 11  |-  -u _i  =  ( 0  -  _i )
6160mpteq2i 4530 . . . . . . . . . 10  |-  ( x  e.  CC  |->  -u _i )  =  ( x  e.  CC  |->  ( 0  -  _i ) )
6259, 61syl6eqr 2526 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  -u _i ) )
63 eqid 2467 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6463cnfldtopon 21041 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
655, 6atansopn 23007 . . . . . . . . . . 11  |-  S  e.  ( TopOpen ` fld )
66 toponss 19213 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  e.  ( TopOpen ` fld ) )  ->  S  C_  CC )
6764, 65, 66mp2an 672 . . . . . . . . . 10  |-  S  C_  CC
6867a1i 11 . . . . . . . . 9  |-  ( T. 
->  S  C_  CC )
6963cnfldtop 21042 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
7064toponunii 19216 . . . . . . . . . . . 12  |-  CC  =  U. ( TopOpen ` fld )
7170restid 14688 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
7269, 71ax-mp 5 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
7372eqcomi 2480 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
7465a1i 11 . . . . . . . . 9  |-  ( T. 
->  S  e.  ( TopOpen
` fld
) )
752, 46, 47, 62, 68, 73, 63, 74dvmptres 22117 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( 1  -  ( _i  x.  x ) ) ) )  =  ( x  e.  S  |->  -u _i ) )
76 fssres 5750 . . . . . . . . . . . . . 14  |-  ( ( log : ( CC 
\  { 0 } ) --> ran  log  /\  D  C_  ( CC  \  {
0 } ) )  ->  ( log  |`  D ) : D --> ran  log )
7738, 33, 76mp2an 672 . . . . . . . . . . . . 13  |-  ( log  |`  D ) : D --> ran  log
7877a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  ( log  |`  D ) : D --> ran  log )
7978feqmptd 5919 . . . . . . . . . . 11  |-  ( T. 
->  ( log  |`  D )  =  ( y  e.  D  |->  ( ( log  |`  D ) `  y
) ) )
80 fvres 5879 . . . . . . . . . . . 12  |-  ( y  e.  D  ->  (
( log  |`  D ) `
 y )  =  ( log `  y
) )
8180mpteq2ia 4529 . . . . . . . . . . 11  |-  ( y  e.  D  |->  ( ( log  |`  D ) `  y ) )  =  ( y  e.  D  |->  ( log `  y
) )
8279, 81syl6req 2525 . . . . . . . . . 10  |-  ( T. 
->  ( y  e.  D  |->  ( log `  y
) )  =  ( log  |`  D )
)
8382oveq2d 6299 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
y  e.  D  |->  ( log `  y ) ) )  =  ( CC  _D  ( log  |`  D ) ) )
845dvlog 22776 . . . . . . . . 9  |-  ( CC 
_D  ( log  |`  D ) )  =  ( y  e.  D  |->  ( 1  /  y ) )
8583, 84syl6eq 2524 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
y  e.  D  |->  ( log `  y ) ) )  =  ( y  e.  D  |->  ( 1  /  y ) ) )
86 fveq2 5865 . . . . . . . 8  |-  ( y  =  ( 1  -  ( _i  x.  x
) )  ->  ( log `  y )  =  ( log `  (
1  -  ( _i  x.  x ) ) ) )
87 oveq2 6291 . . . . . . . 8  |-  ( y  =  ( 1  -  ( _i  x.  x
) )  ->  (
1  /  y )  =  ( 1  / 
( 1  -  (
_i  x.  x )
) ) )
882, 2, 30, 32, 41, 43, 75, 85, 86, 87dvmptco 22126 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( log `  ( 1  -  ( _i  x.  x ) ) ) ) )  =  ( x  e.  S  |->  ( ( 1  /  (
1  -  ( _i  x.  x ) ) )  x.  -u _i ) ) )
89 irec 12234 . . . . . . . . . 10  |-  ( 1  /  _i )  = 
-u _i
9089oveq2i 6294 . . . . . . . . 9  |-  ( ( 1  /  ( 1  -  ( _i  x.  x ) ) )  x.  ( 1  /  _i ) )  =  ( ( 1  /  (
1  -  ( _i  x.  x ) ) )  x.  -u _i )
914a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  _i  e.  CC )
92 ine0 9991 . . . . . . . . . . . 12  |-  _i  =/=  0
9392a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  _i  =/=  0 )
9416, 91, 17, 93recdiv2d 10337 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
1  -  ( _i  x.  x ) ) )  /  _i )  =  ( 1  / 
( ( 1  -  ( _i  x.  x
) )  x.  _i ) ) )
9516, 17reccld 10312 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( 1  -  ( _i  x.  x ) ) )  e.  CC )
9695, 91, 93divrecd 10322 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
1  -  ( _i  x.  x ) ) )  /  _i )  =  ( ( 1  /  ( 1  -  ( _i  x.  x
) ) )  x.  ( 1  /  _i ) ) )
97 1cnd 9611 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  S )  ->  1  e.  CC )
9897, 14, 91subdird 10012 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  -  (
_i  x.  x )
)  x.  _i )  =  ( ( 1  x.  _i )  -  ( ( _i  x.  x )  x.  _i ) ) )
994mulid2i 9598 . . . . . . . . . . . . . . 15  |-  ( 1  x.  _i )  =  _i
10099a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  S )  ->  (
1  x.  _i )  =  _i )
10191, 12, 91mul32d 9788 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  S )  ->  (
( _i  x.  x
)  x.  _i )  =  ( ( _i  x.  _i )  x.  x ) )
102 ixi 10177 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  _i )  = 
-u 1
103102oveq1i 6293 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  x )  =  ( -u 1  x.  x )
10412mulm1d 10007 . . . . . . . . . . . . . . . 16  |-  ( ( T.  /\  x  e.  S )  ->  ( -u 1  x.  x )  =  -u x )
105103, 104syl5eq 2520 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  S )  ->  (
( _i  x.  _i )  x.  x )  =  -u x )
106101, 105eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  S )  ->  (
( _i  x.  x
)  x.  _i )  =  -u x )
107100, 106oveq12d 6301 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  x.  _i )  -  ( (
_i  x.  x )  x.  _i ) )  =  ( _i  -  -u x
) )
108 subneg 9867 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  -  -u x
)  =  ( _i  +  x ) )
1094, 12, 108sylancr 663 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  S )  ->  (
_i  -  -u x )  =  ( _i  +  x ) )
11098, 107, 1093eqtrd 2512 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  -  (
_i  x.  x )
)  x.  _i )  =  ( _i  +  x ) )
111 addcom 9764 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  +  x
)  =  ( x  +  _i ) )
1124, 12, 111sylancr 663 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
_i  +  x )  =  ( x  +  _i ) )
113110, 112eqtrd 2508 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  -  (
_i  x.  x )
)  x.  _i )  =  ( x  +  _i ) )
114113oveq2d 6299 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( ( 1  -  ( _i  x.  x ) )  x.  _i ) )  =  ( 1  / 
( x  +  _i ) ) )
11594, 96, 1143eqtr3d 2516 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
1  -  ( _i  x.  x ) ) )  x.  ( 1  /  _i ) )  =  ( 1  / 
( x  +  _i ) ) )
11690, 115syl5eqr 2522 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
1  -  ( _i  x.  x ) ) )  x.  -u _i )  =  ( 1  /  ( x  +  _i ) ) )
117116mpteq2dva 4533 . . . . . . 7  |-  ( T. 
->  ( x  e.  S  |->  ( ( 1  / 
( 1  -  (
_i  x.  x )
) )  x.  -u _i ) )  =  ( x  e.  S  |->  ( 1  /  ( x  +  _i ) ) ) )
11888, 117eqtrd 2508 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( log `  ( 1  -  ( _i  x.  x ) ) ) ) )  =  ( x  e.  S  |->  ( 1  /  ( x  +  _i ) ) ) )
119 ovex 6308 . . . . . . 7  |-  ( 1  /  ( x  -  _i ) )  e.  _V
120119a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( x  -  _i ) )  e.  _V )
12128simp3bi 1013 . . . . . . . . 9  |-  ( x  e.  S  ->  (
1  +  ( _i  x.  x ) )  e.  D )
122121adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
1  +  ( _i  x.  x ) )  e.  D )
1233, 45, 19sylancr 663 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  +  ( _i  x.  x ) )  e.  CC )
1242, 48, 49, 51, 45, 52, 58dvmptadd 22114 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  +  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( 0  +  _i ) ) )
1254addid2i 9766 . . . . . . . . . . 11  |-  ( 0  +  _i )  =  _i
126125mpteq2i 4530 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( 0  +  _i ) )  =  ( x  e.  CC  |->  _i )
127124, 126syl6eq 2524 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  +  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  _i ) )
1282, 123, 52, 127, 68, 73, 63, 74dvmptres 22117 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( 1  +  ( _i  x.  x ) ) ) )  =  ( x  e.  S  |->  _i ) )
129 fveq2 5865 . . . . . . . 8  |-  ( y  =  ( 1  +  ( _i  x.  x
) )  ->  ( log `  y )  =  ( log `  (
1  +  ( _i  x.  x ) ) ) )
130 oveq2 6291 . . . . . . . 8  |-  ( y  =  ( 1  +  ( _i  x.  x
) )  ->  (
1  /  y )  =  ( 1  / 
( 1  +  ( _i  x.  x ) ) ) )
1312, 2, 122, 91, 41, 43, 128, 85, 129, 130dvmptco 22126 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) )  =  ( x  e.  S  |->  ( ( 1  /  (
1  +  ( _i  x.  x ) ) )  x.  _i ) ) )
13297, 20, 91, 21, 93divdiv2d 10351 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( ( 1  +  ( _i  x.  x ) )  /  _i ) )  =  ( ( 1  x.  _i )  / 
( 1  +  ( _i  x.  x ) ) ) )
13397, 14, 91, 93divdird 10357 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  +  ( _i  x.  x ) )  /  _i )  =  ( ( 1  /  _i )  +  ( ( _i  x.  x )  /  _i ) ) )
13489a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  _i )  =  -u _i )
13512, 91, 93divcan3d 10324 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( _i  x.  x
)  /  _i )  =  x )
136134, 135oveq12d 6301 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  _i )  +  ( (
_i  x.  x )  /  _i ) )  =  ( -u _i  +  x ) )
137 negicn 9820 . . . . . . . . . . . . 13  |-  -u _i  e.  CC
138 addcom 9764 . . . . . . . . . . . . 13  |-  ( (
-u _i  e.  CC  /\  x  e.  CC )  ->  ( -u _i  +  x )  =  ( x  +  -u _i ) )
139137, 12, 138sylancr 663 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  ( -u _i  +  x )  =  ( x  +  -u _i ) )
140 negsub 9866 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( x  +  -u _i )  =  (
x  -  _i ) )
14112, 4, 140sylancl 662 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
x  +  -u _i )  =  ( x  -  _i ) )
142139, 141eqtrd 2508 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  ( -u _i  +  x )  =  ( x  -  _i ) )
143133, 136, 1423eqtrd 2512 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  +  ( _i  x.  x ) )  /  _i )  =  ( x  -  _i ) )
144143oveq2d 6299 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( ( 1  +  ( _i  x.  x ) )  /  _i ) )  =  ( 1  / 
( x  -  _i ) ) )
14597, 91, 20, 21div23d 10356 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  x.  _i )  /  ( 1  +  ( _i  x.  x
) ) )  =  ( ( 1  / 
( 1  +  ( _i  x.  x ) ) )  x.  _i ) )
146132, 144, 1453eqtr3rd 2517 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
1  +  ( _i  x.  x ) ) )  x.  _i )  =  ( 1  / 
( x  -  _i ) ) )
147146mpteq2dva 4533 . . . . . . 7  |-  ( T. 
->  ( x  e.  S  |->  ( ( 1  / 
( 1  +  ( _i  x.  x ) ) )  x.  _i ) )  =  ( x  e.  S  |->  ( 1  /  ( x  -  _i ) ) ) )
148131, 147eqtrd 2508 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) )  =  ( x  e.  S  |->  ( 1  /  ( x  -  _i ) ) ) )
1492, 18, 27, 118, 22, 120, 148dvmptsub 22121 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) )  =  ( x  e.  S  |->  ( ( 1  /  ( x  +  _i ) )  -  ( 1  / 
( x  -  _i ) ) ) ) )
150 subcl 9818 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( x  -  _i )  e.  CC )
15112, 4, 150sylancl 662 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
x  -  _i )  e.  CC )
152 addcl 9573 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( x  +  _i )  e.  CC )
15312, 4, 152sylancl 662 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
x  +  _i )  e.  CC )
15412sqcld 12275 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
x ^ 2 )  e.  CC )
155 addcl 9573 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  +  ( x ^ 2 ) )  e.  CC )
1563, 154, 155sylancr 663 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
1  +  ( x ^ 2 ) )  e.  CC )
157 atandm4 22954 . . . . . . . . . 10  |-  ( x  e.  dom arctan  <->  ( x  e.  CC  /\  ( 1  +  ( x ^
2 ) )  =/=  0 ) )
158157simprbi 464 . . . . . . . . 9  |-  ( x  e.  dom arctan  ->  ( 1  +  ( x ^
2 ) )  =/=  0 )
1599, 158syl 16 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
1  +  ( x ^ 2 ) )  =/=  0 )
160151, 153, 156, 159divsubdird 10358 . . . . . . 7  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  -  _i )  -  (
x  +  _i ) )  /  ( 1  +  ( x ^
2 ) ) )  =  ( ( ( x  -  _i )  /  ( 1  +  ( x ^ 2 ) ) )  -  ( ( x  +  _i )  /  (
1  +  ( x ^ 2 ) ) ) ) )
161141oveq1d 6298 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  +  -u _i )  -  (
x  +  _i ) )  =  ( ( x  -  _i )  -  ( x  +  _i ) ) )
162137a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  -u _i  e.  CC )
16312, 162, 91pnpcand 9966 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  +  -u _i )  -  (
x  +  _i ) )  =  ( -u _i  -  _i ) )
164161, 163eqtr3d 2510 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  -  ( x  +  _i ) )  =  ( -u _i  -  _i ) )
165 2cn 10605 . . . . . . . . . . . 12  |-  2  e.  CC
166165, 4, 92divreci 10288 . . . . . . . . . . 11  |-  ( 2  /  _i )  =  ( 2  x.  (
1  /  _i ) )
16789oveq2i 6294 . . . . . . . . . . 11  |-  ( 2  x.  ( 1  /  _i ) )  =  ( 2  x.  -u _i )
168166, 167eqtri 2496 . . . . . . . . . 10  |-  ( 2  /  _i )  =  ( 2  x.  -u _i )
1691372timesi 10655 . . . . . . . . . 10  |-  ( 2  x.  -u _i )  =  ( -u _i  +  -u _i )
170137, 4negsubi 9896 . . . . . . . . . 10  |-  ( -u _i  +  -u _i )  =  ( -u _i  -  _i )
171168, 169, 1703eqtri 2500 . . . . . . . . 9  |-  ( 2  /  _i )  =  ( -u _i  -  _i )
172164, 171syl6eqr 2526 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  -  ( x  +  _i ) )  =  ( 2  /  _i ) )
173172oveq1d 6298 . . . . . . 7  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  -  _i )  -  (
x  +  _i ) )  /  ( 1  +  ( x ^
2 ) ) )  =  ( ( 2  /  _i )  / 
( 1  +  ( x ^ 2 ) ) ) )
174151mulid1d 9612 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  x.  1 )  =  ( x  -  _i ) )
175151, 153mulcomd 9616 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  x.  ( x  +  _i ) )  =  ( ( x  +  _i )  x.  (
x  -  _i ) ) )
176 i2 12235 . . . . . . . . . . . . . 14  |-  ( _i
^ 2 )  = 
-u 1
177176oveq2i 6294 . . . . . . . . . . . . 13  |-  ( ( x ^ 2 )  -  ( _i ^
2 ) )  =  ( ( x ^
2 )  -  -u 1
)
178 subneg 9867 . . . . . . . . . . . . . 14  |-  ( ( ( x ^ 2 )  e.  CC  /\  1  e.  CC )  ->  ( ( x ^
2 )  -  -u 1
)  =  ( ( x ^ 2 )  +  1 ) )
179154, 3, 178sylancl 662 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  S )  ->  (
( x ^ 2 )  -  -u 1
)  =  ( ( x ^ 2 )  +  1 ) )
180177, 179syl5eq 2520 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( x ^ 2 )  -  ( _i
^ 2 ) )  =  ( ( x ^ 2 )  +  1 ) )
181 subsq 12242 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( ( x ^
2 )  -  (
_i ^ 2 ) )  =  ( ( x  +  _i )  x.  ( x  -  _i ) ) )
18212, 4, 181sylancl 662 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( x ^ 2 )  -  ( _i
^ 2 ) )  =  ( ( x  +  _i )  x.  ( x  -  _i ) ) )
183 addcom 9764 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  CC  /\  1  e.  CC )  ->  ( ( x ^
2 )  +  1 )  =  ( 1  +  ( x ^
2 ) ) )
184154, 3, 183sylancl 662 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( x ^ 2 )  +  1 )  =  ( 1  +  ( x ^ 2 ) ) )
185180, 182, 1843eqtr3d 2516 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  +  _i )  x.  ( x  -  _i ) )  =  ( 1  +  ( x ^ 2 ) ) )
186175, 185eqtrd 2508 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  x.  ( x  +  _i ) )  =  ( 1  +  ( x ^ 2 ) ) )
187174, 186oveq12d 6301 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  -  _i )  x.  1
)  /  ( ( x  -  _i )  x.  ( x  +  _i ) ) )  =  ( ( x  -  _i )  /  (
1  +  ( x ^ 2 ) ) ) )
188 subneg 9867 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( x  -  -u _i )  =  ( x  +  _i ) )
18912, 4, 188sylancl 662 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
x  -  -u _i )  =  ( x  +  _i ) )
190 atandm 22951 . . . . . . . . . . . . . 14  |-  ( x  e.  dom arctan  <->  ( x  e.  CC  /\  x  =/=  -u _i  /\  x  =/=  _i ) )
1919, 190sylib 196 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  S )  ->  (
x  e.  CC  /\  x  =/=  -u _i  /\  x  =/=  _i ) )
192191simp2d 1009 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  x  =/=  -u _i )
193 subeq0 9844 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  -u _i  e.  CC )  ->  ( ( x  -  -u _i )  =  0  <->  x  =  -u _i ) )
194193necon3bid 2725 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  -u _i  e.  CC )  ->  ( ( x  -  -u _i )  =/=  0  <->  x  =/=  -u _i ) )
19512, 137, 194sylancl 662 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  -u _i )  =/=  0  <->  x  =/=  -u _i ) )
196192, 195mpbird 232 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
x  -  -u _i )  =/=  0 )
197189, 196eqnetrrd 2761 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
x  +  _i )  =/=  0 )
198191simp3d 1010 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  x  =/=  _i )
199 subeq0 9844 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( ( x  -  _i )  =  0  <->  x  =  _i ) )
200199necon3bid 2725 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  _i  e.  CC )  -> 
( ( x  -  _i )  =/=  0  <->  x  =/=  _i ) )
20112, 4, 200sylancl 662 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  =/=  0  <->  x  =/=  _i ) )
202198, 201mpbird 232 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
x  -  _i )  =/=  0 )
20397, 153, 151, 197, 202divcan5d 10345 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  -  _i )  x.  1
)  /  ( ( x  -  _i )  x.  ( x  +  _i ) ) )  =  ( 1  /  (
x  +  _i ) ) )
204187, 203eqtr3d 2510 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  -  _i )  /  ( 1  +  ( x ^ 2 ) ) )  =  ( 1  /  (
x  +  _i ) ) )
205153mulid1d 9612 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  +  _i )  x.  1 )  =  ( x  +  _i ) )
206205, 185oveq12d 6301 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  +  _i )  x.  1
)  /  ( ( x  +  _i )  x.  ( x  -  _i ) ) )  =  ( ( x  +  _i )  /  (
1  +  ( x ^ 2 ) ) ) )
20797, 151, 153, 202, 197divcan5d 10345 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  +  _i )  x.  1
)  /  ( ( x  +  _i )  x.  ( x  -  _i ) ) )  =  ( 1  /  (
x  -  _i ) ) )
208206, 207eqtr3d 2510 . . . . . . . 8  |-  ( ( T.  /\  x  e.  S )  ->  (
( x  +  _i )  /  ( 1  +  ( x ^ 2 ) ) )  =  ( 1  /  (
x  -  _i ) ) )
209204, 208oveq12d 6301 . . . . . . 7  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( x  -  _i )  /  (
1  +  ( x ^ 2 ) ) )  -  ( ( x  +  _i )  /  ( 1  +  ( x ^ 2 ) ) ) )  =  ( ( 1  /  ( x  +  _i ) )  -  (
1  /  ( x  -  _i ) ) ) )
210160, 173, 2093eqtr3rd 2517 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
( 1  /  (
x  +  _i ) )  -  ( 1  /  ( x  -  _i ) ) )  =  ( ( 2  /  _i )  /  (
1  +  ( x ^ 2 ) ) ) )
211210mpteq2dva 4533 . . . . 5  |-  ( T. 
->  ( x  e.  S  |->  ( ( 1  / 
( x  +  _i ) )  -  (
1  /  ( x  -  _i ) ) ) )  =  ( x  e.  S  |->  ( ( 2  /  _i )  /  ( 1  +  ( x ^ 2 ) ) ) ) )
212149, 211eqtrd 2508 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) )  =  ( x  e.  S  |->  ( ( 2  /  _i )  /  ( 1  +  ( x ^ 2 ) ) ) ) )
213 halfcl 10763 . . . . 5  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
2144, 213mp1i 12 . . . 4  |-  ( T. 
->  ( _i  /  2
)  e.  CC )
2152, 23, 25, 212, 214dvmptcmul 22118 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  S  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) ) )  =  ( x  e.  S  |->  ( ( _i  /  2 )  x.  ( ( 2  /  _i )  / 
( 1  +  ( x ^ 2 ) ) ) ) ) )
216 df-atan 22942 . . . . . . 7  |- arctan  =  ( x  e.  ( CC 
\  { -u _i ,  _i } )  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )
217216reseq1i 5268 . . . . . 6  |-  (arctan  |`  S )  =  ( ( x  e.  ( CC  \  { -u _i ,  _i } )  |->  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  x )
) )  -  ( log `  ( 1  +  ( _i  x.  x
) ) ) ) ) )  |`  S )
218 atanf 22955 . . . . . . . . 9  |- arctan : ( CC  \  { -u _i ,  _i }
) --> CC
219218fdmi 5735 . . . . . . . 8  |-  dom arctan  =  ( CC  \  { -u _i ,  _i }
)
2207, 219sseqtri 3536 . . . . . . 7  |-  S  C_  ( CC  \  { -u _i ,  _i }
)
221 resmpt 5322 . . . . . . 7  |-  ( S 
C_  ( CC  \  { -u _i ,  _i } )  ->  (
( x  e.  ( CC  \  { -u _i ,  _i }
)  |->  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) )  |`  S )  =  ( x  e.  S  |->  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) ) )
222220, 221ax-mp 5 . . . . . 6  |-  ( ( x  e.  ( CC 
\  { -u _i ,  _i } )  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )  |`  S )  =  ( x  e.  S  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )
223217, 222eqtri 2496 . . . . 5  |-  (arctan  |`  S )  =  ( x  e.  S  |->  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) )
224223a1i 11 . . . 4  |-  ( T. 
->  (arctan  |`  S )  =  ( x  e.  S  |->  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) ) )
225224oveq2d 6299 . . 3  |-  ( T. 
->  ( CC  _D  (arctan  |`  S ) )  =  ( CC  _D  (
x  e.  S  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) ) ) )
226 2ne0 10627 . . . . . . 7  |-  2  =/=  0
227 divcan6 10250 . . . . . . 7  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( _i  / 
2 )  x.  (
2  /  _i ) )  =  1 )
2284, 92, 165, 226, 227mp4an 673 . . . . . 6  |-  ( ( _i  /  2 )  x.  ( 2  /  _i ) )  =  1
229228oveq1i 6293 . . . . 5  |-  ( ( ( _i  /  2
)  x.  ( 2  /  _i ) )  /  ( 1  +  ( x ^ 2 ) ) )  =  ( 1  /  (
1  +  ( x ^ 2 ) ) )
2304, 213mp1i 12 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
_i  /  2 )  e.  CC )
231165, 4, 92divcli 10285 . . . . . . 7  |-  ( 2  /  _i )  e.  CC
232231a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  S )  ->  (
2  /  _i )  e.  CC )
233230, 232, 156, 159divassd 10354 . . . . 5  |-  ( ( T.  /\  x  e.  S )  ->  (
( ( _i  / 
2 )  x.  (
2  /  _i ) )  /  ( 1  +  ( x ^
2 ) ) )  =  ( ( _i 
/  2 )  x.  ( ( 2  /  _i )  /  (
1  +  ( x ^ 2 ) ) ) ) )
234229, 233syl5eqr 2522 . . . 4  |-  ( ( T.  /\  x  e.  S )  ->  (
1  /  ( 1  +  ( x ^
2 ) ) )  =  ( ( _i 
/  2 )  x.  ( ( 2  /  _i )  /  (
1  +  ( x ^ 2 ) ) ) ) )
235234mpteq2dva 4533 . . 3  |-  ( T. 
->  ( x  e.  S  |->  ( 1  /  (
1  +  ( x ^ 2 ) ) ) )  =  ( x  e.  S  |->  ( ( _i  /  2
)  x.  ( ( 2  /  _i )  /  ( 1  +  ( x ^ 2 ) ) ) ) ) )
236215, 225, 2353eqtr4d 2518 . 2  |-  ( T. 
->  ( CC  _D  (arctan  |`  S ) )  =  ( x  e.  S  |->  ( 1  /  (
1  +  ( x ^ 2 ) ) ) ) )
237236trud 1388 1  |-  ( CC 
_D  (arctan  |`  S ) )  =  ( x  e.  S  |->  ( 1  /  ( 1  +  ( x ^ 2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   {crab 2818   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   {cpr 4029    |-> cmpt 4505   dom cdm 4999   ran crn 5000    |` cres 5001   -->wf 5583   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492   _ici 9493    + caddc 9494    x. cmul 9496   -oocmnf 9625    - cmin 9804   -ucneg 9805    / cdiv 10205   2c2 10584   (,]cioc 11529   ^cexp 12133   ↾t crest 14675   TopOpenctopn 14676  ℂfldccnfld 18207   Topctop 19177  TopOnctopon 19178    _D cdv 22018   logclog 22686  arctancatan 22939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-tan 13668  df-pi 13669  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-cmp 19669  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022  df-log 22688  df-atan 22942
This theorem is referenced by:  atancn  23011
  Copyright terms: Public domain W3C validator