Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvasin Structured version   Unicode version

Theorem dvasin 30078
Description: Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
Assertion
Ref Expression
dvasin  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Distinct variable group:    x, D

Proof of Theorem dvasin
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-asin 23068 . . . . 5  |- arcsin  =  ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
21reseq1i 5259 . . . 4  |-  (arcsin  |`  D )  =  ( ( x  e.  CC  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )  |`  D )
3 dvasin.d . . . . . 6  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
4 difss 3616 . . . . . 6  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  C_  CC
53, 4eqsstri 3519 . . . . 5  |-  D  C_  CC
6 resmpt 5313 . . . . 5  |-  ( D 
C_  CC  ->  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
75, 6ax-mp 5 . . . 4  |-  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
82, 7eqtri 2472 . . 3  |-  (arcsin  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
98oveq2i 6292 . 2  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
10 cnelprrecn 9588 . . . . 5  |-  CC  e.  { RR ,  CC }
1110a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
125sseli 3485 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
13 ax-icn 9554 . . . . . . . . 9  |-  _i  e.  CC
14 mulcl 9579 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  x.  x
)  e.  CC )
1513, 14mpan 670 . . . . . . . 8  |-  ( x  e.  CC  ->  (
_i  x.  x )  e.  CC )
16 ax-1cn 9553 . . . . . . . . . 10  |-  1  e.  CC
17 sqcl 12209 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
x ^ 2 )  e.  CC )
18 subcl 9824 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( x ^ 2 ) )  e.  CC )
1916, 17, 18sylancr 663 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
2019sqrtcld 13247 . . . . . . . 8  |-  ( x  e.  CC  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
2115, 20addcld 9618 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
2212, 21syl 16 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
23 asinlem 23071 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2412, 23syl 16 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2522, 24logcld 22830 . . . . 5  |-  ( x  e.  D  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
2625adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
27 ovex 6309 . . . . 5  |-  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
2827a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
29 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR )
30 asinlem3 23074 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
31 rere 12934 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3231breq2d 4449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  <->  0  <_  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
3332biimpac 486 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR )  ->  0  <_  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )
3430, 33sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <_  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3523adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
3629, 34, 35ne0gt0d 9725 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
37 0re 9599 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltnle 9667 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
3937, 38mpan 670 . . . . . . . . . . . . . . . 16  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
4039adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4136, 40mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)
4241ex 434 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4312, 42syl 16 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
44 imor 412 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4543, 44sylib 196 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4645orcomd 388 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) )
4746olcd 393 . . . . . . . . 9  |-  ( x  e.  D  ->  ( -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) ) )
48 3ianor 991 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 )  <->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
49 3orrot 980 . . . . . . . . . . 11  |-  ( ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)  <->  ( -. -oo  <  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR ) )
50 3orass 977 . . . . . . . . . . 11  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) 
<->  ( -. -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) ) )
5148, 49, 503bitrri 272 . . . . . . . . . 10  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
52 mnfxr 11332 . . . . . . . . . . 11  |- -oo  e.  RR*
53 elioc2 11596 . . . . . . . . . . 11  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) ) )
5452, 37, 53mp2an 672 . . . . . . . . . 10  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
5551, 54xchbinxr 311 . . . . . . . . 9  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
) )
5647, 55sylib 196 . . . . . . . 8  |-  ( x  e.  D  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
5722, 56eldifd 3472 . . . . . . 7  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
5857adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
59 ovex 6309 . . . . . . 7  |-  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
6059a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V )
61 eldifi 3611 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  e.  CC )
62 eldifn 3612 . . . . . . . . 9  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  -.  y  e.  ( -oo (,] 0
) )
63 0xr 9643 . . . . . . . . . . . 12  |-  0  e.  RR*
64 mnflt0 11343 . . . . . . . . . . . 12  |- -oo  <  0
65 ubioc1 11587 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ -oo  <  0 )  ->  0  e.  ( -oo (,] 0
) )
6652, 63, 64, 65mp3an 1325 . . . . . . . . . . 11  |-  0  e.  ( -oo (,] 0
)
67 eleq1 2515 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
y  e.  ( -oo (,] 0 )  <->  0  e.  ( -oo (,] 0 ) ) )
6866, 67mpbiri 233 . . . . . . . . . 10  |-  ( y  =  0  ->  y  e.  ( -oo (,] 0
) )
6968necon3bi 2672 . . . . . . . . 9  |-  ( -.  y  e.  ( -oo (,] 0 )  ->  y  =/=  0 )
7062, 69syl 16 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  =/=  0 )
7161, 70logcld 22830 . . . . . . 7  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( log `  y )  e.  CC )
7271adantl 466 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( log `  y )  e.  CC )
73 ovex 6309 . . . . . . 7  |-  ( 1  /  y )  e. 
_V
7473a1i 11 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  y )  e. 
_V )
7513a1i 11 . . . . . . . . . 10  |-  ( x  e.  D  ->  _i  e.  CC )
7675, 12mulcld 9619 . . . . . . . . 9  |-  ( x  e.  D  ->  (
_i  x.  x )  e.  CC )
7776adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  x.  x )  e.  CC )
7813a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  _i  e.  CC )
7912adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  x  e.  CC )
80 1cnd 9615 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  1  e.  CC )
81 simpr 461 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
82 1cnd 9615 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
8311dvmptid 22233 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
845a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  C_  CC )
85 eqid 2443 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8685cnfldtopon 21163 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8786toponunii 19306 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
8887restid 14708 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8986, 88ax-mp 5 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
9089eqcomi 2456 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
9185recld2 21192 . . . . . . . . . . . . . . 15  |-  RR  e.  ( Clsd `  ( TopOpen ` fld ) )
92 neg1rr 10646 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  RR
93 iocmnfcld 21149 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  e.  RR  ->  ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( -oo (,] -u 1 )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
95 1re 9598 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
96 icopnfcld 21148 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  RR  ->  (
1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
98 uncld 19415 . . . . . . . . . . . . . . . . 17  |-  ( ( ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
)  /\  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )  ->  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9994, 97, 98mp2an 672 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
10085tgioo2 21181 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101100fveq2i 5859 . . . . . . . . . . . . . . . 16  |-  ( Clsd `  ( topGen `  ran  (,) )
)  =  ( Clsd `  ( ( TopOpen ` fld )t  RR ) )
10299, 101eleqtri 2529 . . . . . . . . . . . . . . 15  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) )
103 restcldr 19548 . . . . . . . . . . . . . . 15  |-  ( ( RR  e.  ( Clsd `  ( TopOpen ` fld ) )  /\  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) ) )  ->  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  e.  (
Clsd `  ( TopOpen ` fld ) ) )
10491, 102, 103mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )
10587cldopn 19405 . . . . . . . . . . . . . 14  |-  ( ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )  ->  ( CC  \  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld ) )
106104, 105ax-mp 5 . . . . . . . . . . . . 13  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld )
1073, 106eqeltri 2527 . . . . . . . . . . . 12  |-  D  e.  ( TopOpen ` fld )
108107a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  e.  ( TopOpen
` fld
) )
10911, 81, 82, 83, 84, 90, 85, 108dvmptres 22239 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  x ) )  =  ( x  e.  D  |->  1 ) )
11013a1i 11 . . . . . . . . . 10  |-  ( T. 
->  _i  e.  CC )
11111, 79, 80, 109, 110dvmptcmul 22240 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  ( _i  x.  1 ) ) )
11213mulid1i 9601 . . . . . . . . . 10  |-  ( _i  x.  1 )  =  _i
113112mpteq2i 4520 . . . . . . . . 9  |-  ( x  e.  D  |->  ( _i  x.  1 ) )  =  ( x  e.  D  |->  _i )
114111, 113syl6eq 2500 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  _i ) )
11512sqcld 12287 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
x ^ 2 )  e.  CC )
11616, 115, 18sylancr 663 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
117116sqrtcld 13247 . . . . . . . . 9  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
118117adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
119 ovex 6309 . . . . . . . . 9  |-  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
120119a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( -u x  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
121 elin 3672 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  <->  ( x  e.  D  /\  x  e.  RR ) )
1223asindmre 30077 . . . . . . . . . . . . . . . . 17  |-  ( D  i^i  RR )  =  ( -u 1 (,) 1 )
123122eqimssi 3543 . . . . . . . . . . . . . . . 16  |-  ( D  i^i  RR )  C_  ( -u 1 (,) 1
)
124123sseli 3485 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  ->  x  e.  ( -u 1 (,) 1
) )
125121, 124sylbir 213 . . . . . . . . . . . . . 14  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  x  e.  ( -u
1 (,) 1 ) )
126 incom 3676 . . . . . . . . . . . . . . . 16  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  ( ( -oo (,] 0
)  i^i  ( 0 (,) +oo ) )
127 pnfxr 11330 . . . . . . . . . . . . . . . . 17  |- +oo  e.  RR*
128 df-ioc 11543 . . . . . . . . . . . . . . . . . 18  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
129 df-ioo 11542 . . . . . . . . . . . . . . . . . 18  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
130 xrltnle 9656 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR*  /\  w  e.  RR* )  ->  (
0  <  w  <->  -.  w  <_  0 ) )
131128, 129, 130ixxdisj 11553 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/) )
13252, 63, 127, 131mp3an 1325 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/)
133126, 132eqtri 2472 . . . . . . . . . . . . . . 15  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  (/)
134 elioore 11568 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  e.  RR )
135134resqcld 12315 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
x ^ 2 )  e.  RR )
136 resubcl 9888 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( 1  -  ( x ^ 2 ) )  e.  RR )
13795, 135, 136sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
13892rexri 9649 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  RR*
13995rexri 9649 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
140 elioo2 11579 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( x  e.  (
-u 1 (,) 1
)  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) ) )
141138, 139, 140mp2an 672 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) )
142 recn 9585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  x  e.  CC )
143142abscld 13246 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
144142absge0d 13254 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  0  <_  ( abs `  x
) )
145 0le1 10082 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <_  1
146 lt2sq 12220 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( abs `  x )  <  1  <->  ( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 ) ) )
14795, 145, 146mpanr12 685 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
148143, 144, 147syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
149 abslt 13126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
15095, 149mpan2 671 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
151 absresq 13114 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
152 sq1 12241 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ^ 2 )  =  1
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
1 ^ 2 )  =  1 )
154151, 153breq12d 4450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( x ^ 2 )  <  1 ) )
155 resqcl 12214 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
x ^ 2 )  e.  RR )
156 posdif 10051 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( x ^
2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
157155, 95, 156sylancl 662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( x ^ 2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
158154, 157bitrd 253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
159148, 150, 1583bitr3d 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  <->  0  <  (
1  -  ( x ^ 2 ) ) ) )
160159biimpd 207 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  ->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
1611603impib 1195 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 )  -> 
0  <  ( 1  -  ( x ^
2 ) ) )
162141, 161sylbi 195 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
x ^ 2 ) ) )
163137, 162elrpd 11263 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR+ )
164 ioorp 11611 . . . . . . . . . . . . . . . 16  |-  ( 0 (,) +oo )  = 
RR+
165163, 164syl6eleqr 2542 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )
166 disjel 3859 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 0 (,) +oo )  i^i  ( -oo (,] 0 ) )  =  (/)  /\  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
167133, 165, 166sylancr 663 . . . . . . . . . . . . . 14  |-  ( x  e.  ( -u 1 (,) 1 )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
168125, 167syl 16 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  -.  ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 ) )
169 elioc2 11596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) ) )
17052, 37, 169mp2an 672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) )
171170biimpi 194 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
( 1  -  (
x ^ 2 ) )  e.  RR  /\ -oo 
<  ( 1  -  ( x ^ 2 ) )  /\  (
1  -  ( x ^ 2 ) )  <_  0 ) )
172171simp1d 1009 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
173 resubcl 9888 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  e.  RR )
17495, 172, 173sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  e.  RR )
175 nncan 9853 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  =  ( x ^ 2 ) )
17616, 175mpan 670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x ^ 2 )  e.  CC  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  =  ( x ^
2 ) )
177176eleq1d 2512 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x ^ 2 )  e.  CC  ->  (
( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR  <->  ( x ^ 2 )  e.  RR ) )
178177biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR )  ->  ( x ^
2 )  e.  RR )
179174, 178sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x ^ 2 )  e.  RR )
180172adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  e.  RR )
181171simp3d 1011 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  <_  0 )
182181adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  0 )
183 letr 9681 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1  -  (
x ^ 2 ) )  e.  RR  /\  0  e.  RR  /\  1  e.  RR )  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18437, 95, 183mp3an23 1317 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
185145, 184mpan2i 677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( 1  -  (
x ^ 2 ) )  <_  0  ->  ( 1  -  ( x ^ 2 ) )  <_  1 ) )
186180, 182, 185sylc 60 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  1 )
187 subge0 10071 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 0  <_ 
( 1  -  (
1  -  ( x ^ 2 ) ) )  <->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18895, 180, 187sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 0  <_  (
1  -  ( 1  -  ( x ^
2 ) ) )  <-> 
( 1  -  (
x ^ 2 ) )  <_  1 ) )
189186, 188mpbird 232 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( 1  -  ( 1  -  ( x ^ 2 ) ) ) )
190176adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
1  -  ( x ^ 2 ) ) )  =  ( x ^ 2 ) )
191189, 190breqtrd 4461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( x ^ 2 ) )
192179, 191resqrtcld 13228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
19317, 192sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
194 eleq1 2515 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  ( sqr `  (
x ^ 2 ) )  e.  RR ) )
195193, 194syl5ibrcom 222 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
196193renegcld 9992 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  -u ( sqr `  (
x ^ 2 ) )  e.  RR )
197 eleq1 2515 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  -u ( sqr `  (
x ^ 2 ) )  e.  RR ) )
198196, 197syl5ibrcom 222 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  -u ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
199 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( x ^ 2 )  =  ( x ^ 2 )
200 eqsqrtor 13178 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( ( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
20117, 200mpdan 668 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
202199, 201mpbii 211 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  (
x ^ 2 ) ) ) )
203202adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  ( x ^ 2 ) ) ) )
204195, 198, 203mpjaod 381 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  x  e.  RR )
205204stoic1a 1592 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
20612, 205sylan 471 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
207168, 206pm2.61dan 791 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
208116, 207eldifd 3472 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
209208adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
210 2cnd 10614 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  2  e.  CC )
211 id 22 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x  e.  CC )
212210, 211mulcld 9619 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
213212negcld 9923 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  -u (
2  x.  x )  e.  CC )
214213adantl 466 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
2  x.  x )  e.  CC )
21512, 214sylan2 474 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  -u (
2  x.  x )  e.  CC )
21661sqrtcld 13247 . . . . . . . . . . 11  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( sqr `  y )  e.  CC )
217216adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( sqr `  y )  e.  CC )
218 ovex 6309 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V
219218a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V )
22019adantl 466 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
22137a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  0  e.  RR )
222 1cnd 9615 . . . . . . . . . . . . . 14  |-  ( T. 
->  1  e.  CC )
22311, 222dvmptc 22234 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  1 ) )  =  ( x  e.  CC  |->  0 ) )
22417adantl 466 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
x ^ 2 )  e.  CC )
225 2cn 10612 . . . . . . . . . . . . . . 15  |-  2  e.  CC
226 mulcl 9579 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
227225, 226mpan 670 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
228227adantl 466 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
2  x.  x )  e.  CC )
229 2nn 10699 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
230 dvexp 22229 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) ) )
231229, 230ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) )
232 2m1e1 10656 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
233232oveq2i 6292 . . . . . . . . . . . . . . . . . 18  |-  ( x ^ ( 2  -  1 ) )  =  ( x ^ 1 )
234 exp1 12151 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
235233, 234syl5eq 2496 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x ^ ( 2  -  1 ) )  =  x )
236235oveq2d 6297 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
2  x.  ( x ^ ( 2  -  1 ) ) )  =  ( 2  x.  x ) )
237236mpteq2ia 4519 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( 2  x.  ( x ^
( 2  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
238231, 237eqtri 2472 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
239238a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( x ^ 2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) ) )
24011, 82, 221, 223, 224, 228, 239dvmptsub 22243 . . . . . . . . . . . 12  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) ) )
241 df-neg 9813 . . . . . . . . . . . . 13  |-  -u (
2  x.  x )  =  ( 0  -  ( 2  x.  x
) )
242241mpteq2i 4520 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  -u (
2  x.  x ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) )
243240, 242syl6eqr 2502 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  -u ( 2  x.  x
) ) )
24411, 220, 214, 243, 84, 90, 85, 108dvmptres 22239 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  D  |->  -u ( 2  x.  x
) ) )
245 eqid 2443 . . . . . . . . . . . 12  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
246245dvcnsqrt 30076 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( sqr `  y
) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) )
247246a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( sqr `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) ) )
248 fveq2 5856 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  ( sqr `  y )  =  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )
249248oveq2d 6297 . . . . . . . . . . 11  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
250249oveq2d 6297 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  y
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
25111, 11, 209, 215, 217, 219, 244, 247, 248, 250dvmptco 22248 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) ) ) )
252 mulneg2 10000 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  -u x
)  =  -u (
2  x.  x ) )
253225, 12, 252sylancr 663 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  -u x
)  =  -u (
2  x.  x ) )
254253oveq1d 6296 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
25512negcld 9923 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u x  e.  CC )
256 eldifn 3612 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( CC  \ 
( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
257256, 3eleq2s 2551 . . . . . . . . . . . . . 14  |-  ( x  e.  D  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
258 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  -u 1  ->  x  =  -u 1 )
259 mnflt 11342 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u
1  e.  RR  -> -oo 
<  -u 1 )
26092, 259ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |- -oo  <  -u 1
261 ubioc1 11587 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\ -oo  <  -u 1 )  ->  -u 1  e.  ( -oo (,] -u 1
) )
26252, 138, 260, 261mp3an 1325 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  ( -oo (,] -u 1
)
263258, 262syl6eqel 2539 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u 1  ->  x  e.  ( -oo (,] -u 1
) )
264 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  1  ->  x  =  1 )
265 ltpnf 11340 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  RR  ->  1  < +oo )
26695, 265ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  1  < +oo
267 lbico1 11588 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  1  < +oo )  ->  1  e.  ( 1 [,) +oo ) )
268139, 127, 266, 267mp3an 1325 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ( 1 [,) +oo )
269264, 268syl6eqel 2539 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  x  e.  ( 1 [,) +oo ) )
270263, 269orim12i 516 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
271270orcoms 389 . . . . . . . . . . . . . . 15  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
272 elun 3630 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  <->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
273271, 272sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  x  e.  ( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )
274257, 273nsyl 121 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  -.  ( x  =  1  \/  x  =  -u 1
) )
275 1cnd 9615 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  e.  CC )
27617adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  e.  CC )
27719adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  e.  CC )
278 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0 )
279277, 278sqr00d 13251 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  =  0 )
280275, 276, 279subeq0d 9944 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  =  ( x ^ 2 ) )
281152, 280syl5req 2497 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) )
282281ex 434 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) ) )
283 sqeqor 12261 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  1  e.  CC )  ->  ( ( x ^
2 )  =  ( 1 ^ 2 )  <-> 
( x  =  1  \/  x  =  -u
1 ) ) )
28416, 283mpan2 671 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( 1 ^ 2 )  <->  ( x  =  1  \/  x  =  -u 1 ) ) )
285282, 284sylibd 214 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x  =  1  \/  x  =  -u
1 ) ) )
286285necon3bd 2655 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -.  ( x  =  1  \/  x  =  -u
1 )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 ) )
28712, 274, 286sylc 60 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 )
288 2cnne0 10756 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2  =/=  0 )
289 divcan5 10252 . . . . . . . . . . . . 13  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
290288, 289mp3an3 1314 . . . . . . . . . . . 12  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( 2  x.  -u x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
291255, 117, 287, 290syl12anc 1227 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
292225, 12, 226sylancr 663 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  (
2  x.  x )  e.  CC )
293292negcld 9923 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u (
2  x.  x )  e.  CC )
294 mulcl 9579 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
295225, 117, 294sylancr 663 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
296 mulne0 10197 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( sqr `  ( 1  -  (
x ^ 2 ) ) )  e.  CC  /\  ( sqr `  (
1  -  ( x ^ 2 ) ) )  =/=  0 ) )  ->  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
297288, 296mpan 670 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =/=  0 )
298117, 287, 297syl2anc 661 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
299293, 295, 298divrec2d 10330 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -u ( 2  x.  x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  x.  -u (
2  x.  x ) ) )
300254, 291, 2993eqtr3rd 2493 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
301300mpteq2ia 4519 . . . . . . . . 9  |-  ( x  e.  D  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x
) ) )  =  ( x  e.  D  |->  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
302251, 301syl6eq 2500 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
30311, 77, 78, 114, 118, 120, 302dvmptadd 22236 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
304 mulcl 9579 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
30513, 20, 304sylancr 663 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
30612, 305syl 16 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
307306, 255, 117, 287divdird 10364 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
308 ixi 10184 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  _i )  = 
-u 1
309308eqcomi 2456 . . . . . . . . . . . . . . 15  |-  -u 1  =  ( _i  x.  _i )
310309oveq1i 6291 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  x )  =  ( ( _i  x.  _i )  x.  x )
311 mulm1 10004 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( -u 1  x.  x )  =  -u x )
312 mulass 9583 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
31313, 13, 312mp3an12 1315 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
314310, 311, 3133eqtr3a 2508 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  =  ( _i  x.  ( _i  x.  x
) ) )
315314oveq1d 6296 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  ( -u x  +  ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
316 negcl 9825 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  e.  CC )
317305, 316addcomd 9785 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( -u x  +  ( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
31813a1i 11 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  _i  e.  CC )
319318, 15, 20adddid 9623 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
320315, 317, 3193eqtr4d 2494 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
32112, 320syl 16 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
322321oveq1d 6296 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
32375, 117, 287divcan4d 10332 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  _i )
324323oveq1d 6296 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  +  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  +  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
325307, 322, 3243eqtr3rd 2493 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
326325mpteq2ia 4519 . . . . . . 7  |-  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
327303, 326syl6eq 2500 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
328245dvlog 22904 . . . . . . 7  |-  ( CC 
_D  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  |->  ( 1  / 
y ) )
329 logf1o 22824 . . . . . . . . . 10  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
330 f1of 5806 . . . . . . . . . 10  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
331329, 330mp1i 12 . . . . . . . . 9  |-  ( T. 
->  log : ( CC 
\  { 0 } ) --> ran  log )
332 snssi 4159 . . . . . . . . . . 11  |-  ( 0  e.  ( -oo (,] 0 )  ->  { 0 }  C_  ( -oo (,] 0 ) )
33366, 332ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  ( -oo (,] 0 )
334 sscon 3623 . . . . . . . . . 10  |-  ( { 0 }  C_  ( -oo (,] 0 )  -> 
( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
335333, 334mp1i 12 . . . . . . . . 9  |-  ( T. 
->  ( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
336331, 335feqresmpt 5912 . . . . . . . 8  |-  ( T. 
->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( log `  y
) ) )
337336oveq2d 6297 . . . . . . 7  |-  ( T. 
->  ( CC  _D  ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) ) )  =  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) ) )
338328, 337syl5reqr 2499 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  y ) ) )
339 fveq2 5856 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  ( log `  y )  =  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
340 oveq2 6289 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  (
1  /  y )  =  ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )
34111, 11, 58, 60, 72, 74, 327, 338, 339, 340dvmptco 22248 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) ) )
34222, 24reccld 10319 . . . . . . . 8  |-  ( x  e.  D  ->  (
1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
343 mulcl 9579 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  CC )  ->  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  e.  CC )
34413, 21, 343sylancr 663 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
34512, 344syl 16 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
346342, 345, 117, 287divassd 10361 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( ( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
347345, 22, 24divrec2d 10330 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
34875, 22, 24divcan4d 10332 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  _i )
349347, 348eqtr3d 2486 . . . . . . . 8  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )  =  _i )
350349oveq1d 6296 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
351346, 350eqtr3d 2486 . . . . . 6  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
352351mpteq2ia 4519 . . . . 5  |-  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
353341, 352syl6eq 2500 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
354 negicn 9826 . . . . 5  |-  -u _i  e.  CC
355354a1i 11 . . . 4  |-  ( T. 
->  -u _i  e.  CC )
35611, 26, 28, 353, 355dvmptcmul 22240 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
357356trud 1392 . 2  |-  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
35813, 13mulneg1i 10008 . . . . . 6  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
359308negeqi 9818 . . . . . 6  |-  -u (
_i  x.  _i )  =  -u -u 1
360 negneg1e1 10649 . . . . . 6  |-  -u -u 1  =  1
361358, 359, 3603eqtri 2476 . . . . 5  |-  ( -u _i  x.  _i )  =  1
362361oveq1i 6291 . . . 4  |-  ( (
-u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )
363 divass 10231 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  _i  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( -u _i  x.  _i )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
364354, 13, 363mp3an12 1315 . . . . 5  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( ( -u _i  x.  _i )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
365117, 287, 364syl2anc 661 . . . 4  |-  ( x  e.  D  ->  (
( -u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
366362, 365syl5reqr 2499 . . 3  |-  ( x  e.  D  ->  ( -u _i  x.  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
367366mpteq2ia 4519 . 2  |-  ( x  e.  D  |->  ( -u _i  x.  ( _i  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( 1  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
3689, 357, 3673eqtri 2476 1  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 973    /\ w3a 974    = wceq 1383   T. wtru 1384    e. wcel 1804    =/= wne 2638   _Vcvv 3095    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   {csn 4014   {cpr 4016   class class class wbr 4437    |-> cmpt 4495   ran crn 4990    |` cres 4991   -->wf 5574   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496   _ici 9497    + caddc 9498    x. cmul 9500   +oocpnf 9628   -oocmnf 9629   RR*cxr 9630    < clt 9631    <_ cle 9632    - cmin 9810   -ucneg 9811    / cdiv 10212   NNcn 10542   2c2 10591   RR+crp 11229   (,)cioo 11538   (,]cioc 11539   [,)cico 11540   ^cexp 12145   Recre 12909   sqrcsqrt 13045   abscabs 13046   ↾t crest 14695   TopOpenctopn 14696   topGenctg 14712  ℂfldccnfld 18294  TopOnctopon 19268   Clsdccld 19390    _D cdv 22140   logclog 22814  arcsincasin 23065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ioc 11543  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-fac 12333  df-bc 12360  df-hash 12385  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-ef 13681  df-sin 13683  df-cos 13684  df-tan 13685  df-pi 13686  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-fbas 18290  df-fg 18291  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-nei 19472  df-lp 19510  df-perf 19511  df-cn 19601  df-cnp 19602  df-haus 19689  df-cmp 19760  df-tx 19936  df-hmeo 20129  df-fil 20220  df-fm 20312  df-flim 20313  df-flf 20314  df-xms 20696  df-ms 20697  df-tms 20698  df-cncf 21255  df-limc 22143  df-dv 22144  df-log 22816  df-cxp 22817  df-asin 23068
This theorem is referenced by:  dvacos  30079  dvreasin  30080
  Copyright terms: Public domain W3C validator