Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvasin Structured version   Unicode version

Theorem dvasin 28423
Description: Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
Assertion
Ref Expression
dvasin  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Distinct variable group:    x, D

Proof of Theorem dvasin
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-asin 22229 . . . . 5  |- arcsin  =  ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
21reseq1i 5098 . . . 4  |-  (arcsin  |`  D )  =  ( ( x  e.  CC  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )  |`  D )
3 dvasin.d . . . . . 6  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
4 difss 3476 . . . . . 6  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  C_  CC
53, 4eqsstri 3379 . . . . 5  |-  D  C_  CC
6 resmpt 5149 . . . . 5  |-  ( D 
C_  CC  ->  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
75, 6ax-mp 5 . . . 4  |-  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
82, 7eqtri 2457 . . 3  |-  (arcsin  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
98oveq2i 6097 . 2  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
10 cnelprrecn 9367 . . . . 5  |-  CC  e.  { RR ,  CC }
1110a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
125sseli 3345 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
13 ax-icn 9333 . . . . . . . . 9  |-  _i  e.  CC
14 mulcl 9358 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  x.  x
)  e.  CC )
1513, 14mpan 670 . . . . . . . 8  |-  ( x  e.  CC  ->  (
_i  x.  x )  e.  CC )
16 ax-1cn 9332 . . . . . . . . . 10  |-  1  e.  CC
17 sqcl 11920 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
x ^ 2 )  e.  CC )
18 subcl 9601 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( x ^ 2 ) )  e.  CC )
1916, 17, 18sylancr 663 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
2019sqrcld 12915 . . . . . . . 8  |-  ( x  e.  CC  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
2115, 20addcld 9397 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
2212, 21syl 16 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
23 asinlem 22232 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2412, 23syl 16 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2522, 24logcld 21991 . . . . 5  |-  ( x  e.  D  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
2625adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
27 ovex 6111 . . . . 5  |-  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
2827a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
29 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR )
30 asinlem3 22235 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
31 rere 12603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3231breq2d 4297 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  <->  0  <_  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
3332biimpac 486 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR )  ->  0  <_  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )
3430, 33sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <_  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3523adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
3629, 34, 35ne0gt0d 9503 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
37 0re 9378 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltnle 9446 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
3937, 38mpan 670 . . . . . . . . . . . . . . . 16  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
4039adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4136, 40mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)
4241ex 434 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4312, 42syl 16 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
44 imor 412 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4543, 44sylib 196 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4645orcomd 388 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) )
4746olcd 393 . . . . . . . . 9  |-  ( x  e.  D  ->  ( -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) ) )
48 3ianor 982 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 )  <->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
49 3orrot 971 . . . . . . . . . . 11  |-  ( ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)  <->  ( -. -oo  <  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR ) )
50 3orass 968 . . . . . . . . . . 11  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) 
<->  ( -. -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) ) )
5148, 49, 503bitrri 272 . . . . . . . . . 10  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
52 mnfxr 11086 . . . . . . . . . . 11  |- -oo  e.  RR*
53 elioc2 11350 . . . . . . . . . . 11  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) ) )
5452, 37, 53mp2an 672 . . . . . . . . . 10  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
5551, 54xchbinxr 311 . . . . . . . . 9  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
) )
5647, 55sylib 196 . . . . . . . 8  |-  ( x  e.  D  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
5722, 56eldifd 3332 . . . . . . 7  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
5857adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
59 ovex 6111 . . . . . . 7  |-  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
6059a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V )
61 eldifi 3471 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  e.  CC )
62 eldifn 3472 . . . . . . . . 9  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  -.  y  e.  ( -oo (,] 0
) )
63 0xr 9422 . . . . . . . . . . . 12  |-  0  e.  RR*
64 mnflt0 11097 . . . . . . . . . . . 12  |- -oo  <  0
65 ubioc1 11341 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ -oo  <  0 )  ->  0  e.  ( -oo (,] 0
) )
6652, 63, 64, 65mp3an 1314 . . . . . . . . . . 11  |-  0  e.  ( -oo (,] 0
)
67 eleq1 2497 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
y  e.  ( -oo (,] 0 )  <->  0  e.  ( -oo (,] 0 ) ) )
6866, 67mpbiri 233 . . . . . . . . . 10  |-  ( y  =  0  ->  y  e.  ( -oo (,] 0
) )
6968necon3bi 2646 . . . . . . . . 9  |-  ( -.  y  e.  ( -oo (,] 0 )  ->  y  =/=  0 )
7062, 69syl 16 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  =/=  0 )
7161, 70logcld 21991 . . . . . . 7  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( log `  y )  e.  CC )
7271adantl 466 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( log `  y )  e.  CC )
73 ovex 6111 . . . . . . 7  |-  ( 1  /  y )  e. 
_V
7473a1i 11 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  y )  e. 
_V )
7513a1i 11 . . . . . . . . . 10  |-  ( x  e.  D  ->  _i  e.  CC )
7675, 12mulcld 9398 . . . . . . . . 9  |-  ( x  e.  D  ->  (
_i  x.  x )  e.  CC )
7776adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  x.  x )  e.  CC )
7813a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  _i  e.  CC )
7912adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  x  e.  CC )
80 1cnd 9394 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  1  e.  CC )
81 simpr 461 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
82 1cnd 9394 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
8311dvmptid 21400 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
845a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  C_  CC )
85 eqid 2437 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8685cnfldtopon 20331 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8786toponunii 18506 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
8887restid 14364 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8986, 88ax-mp 5 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
9089eqcomi 2441 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
9185recld2 20360 . . . . . . . . . . . . . . 15  |-  RR  e.  ( Clsd `  ( TopOpen ` fld ) )
92 neg1rr 10418 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  RR
93 iocmnfcld 20317 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  e.  RR  ->  ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( -oo (,] -u 1 )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
95 1re 9377 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
96 icopnfcld 20316 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  RR  ->  (
1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
98 uncld 18614 . . . . . . . . . . . . . . . . 17  |-  ( ( ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
)  /\  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )  ->  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9994, 97, 98mp2an 672 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
10085tgioo2 20349 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101100fveq2i 5687 . . . . . . . . . . . . . . . 16  |-  ( Clsd `  ( topGen `  ran  (,) )
)  =  ( Clsd `  ( ( TopOpen ` fld )t  RR ) )
10299, 101eleqtri 2509 . . . . . . . . . . . . . . 15  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) )
103 restcldr 18747 . . . . . . . . . . . . . . 15  |-  ( ( RR  e.  ( Clsd `  ( TopOpen ` fld ) )  /\  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) ) )  ->  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  e.  (
Clsd `  ( TopOpen ` fld ) ) )
10491, 102, 103mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )
10587cldopn 18604 . . . . . . . . . . . . . 14  |-  ( ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )  ->  ( CC  \  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld ) )
106104, 105ax-mp 5 . . . . . . . . . . . . 13  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld )
1073, 106eqeltri 2507 . . . . . . . . . . . 12  |-  D  e.  ( TopOpen ` fld )
108107a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  e.  ( TopOpen
` fld
) )
10911, 81, 82, 83, 84, 90, 85, 108dvmptres 21406 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  x ) )  =  ( x  e.  D  |->  1 ) )
11013a1i 11 . . . . . . . . . 10  |-  ( T. 
->  _i  e.  CC )
11111, 79, 80, 109, 110dvmptcmul 21407 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  ( _i  x.  1 ) ) )
11213mulid1i 9380 . . . . . . . . . 10  |-  ( _i  x.  1 )  =  _i
113112mpteq2i 4368 . . . . . . . . 9  |-  ( x  e.  D  |->  ( _i  x.  1 ) )  =  ( x  e.  D  |->  _i )
114111, 113syl6eq 2485 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  _i ) )
11512sqcld 11998 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
x ^ 2 )  e.  CC )
11616, 115, 18sylancr 663 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
117116sqrcld 12915 . . . . . . . . 9  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
118117adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
119 ovex 6111 . . . . . . . . 9  |-  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
120119a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( -u x  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
121 elin 3532 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  <->  ( x  e.  D  /\  x  e.  RR ) )
1223asindmre 28422 . . . . . . . . . . . . . . . . 17  |-  ( D  i^i  RR )  =  ( -u 1 (,) 1 )
123122eqimssi 3403 . . . . . . . . . . . . . . . 16  |-  ( D  i^i  RR )  C_  ( -u 1 (,) 1
)
124123sseli 3345 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  ->  x  e.  ( -u 1 (,) 1
) )
125121, 124sylbir 213 . . . . . . . . . . . . . 14  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  x  e.  ( -u
1 (,) 1 ) )
126 incom 3536 . . . . . . . . . . . . . . . 16  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  ( ( -oo (,] 0
)  i^i  ( 0 (,) +oo ) )
127 pnfxr 11084 . . . . . . . . . . . . . . . . 17  |- +oo  e.  RR*
128 df-ioc 11297 . . . . . . . . . . . . . . . . . 18  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
129 df-ioo 11296 . . . . . . . . . . . . . . . . . 18  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
130 xrltnle 9435 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR*  /\  w  e.  RR* )  ->  (
0  <  w  <->  -.  w  <_  0 ) )
131128, 129, 130ixxdisj 11307 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/) )
13252, 63, 127, 131mp3an 1314 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/)
133126, 132eqtri 2457 . . . . . . . . . . . . . . 15  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  (/)
134 elioore 11322 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  e.  RR )
135134resqcld 12026 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
x ^ 2 )  e.  RR )
136 resubcl 9665 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( 1  -  ( x ^ 2 ) )  e.  RR )
13795, 135, 136sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
13892rexri 9428 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  RR*
13995rexri 9428 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
140 elioo2 11333 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( x  e.  (
-u 1 (,) 1
)  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) ) )
141138, 139, 140mp2an 672 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) )
142 recn 9364 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  x  e.  CC )
143142abscld 12914 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
144142absge0d 12922 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  0  <_  ( abs `  x
) )
145 0le1 9855 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <_  1
146 lt2sq 11931 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( abs `  x )  <  1  <->  ( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 ) ) )
14795, 145, 146mpanr12 685 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
148143, 144, 147syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
149 abslt 12794 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
15095, 149mpan2 671 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
151 absresq 12783 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
152 sq1 11952 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ^ 2 )  =  1
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
1 ^ 2 )  =  1 )
154151, 153breq12d 4298 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( x ^ 2 )  <  1 ) )
155 resqcl 11925 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
x ^ 2 )  e.  RR )
156 posdif 9824 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( x ^
2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
157155, 95, 156sylancl 662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( x ^ 2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
158154, 157bitrd 253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
159148, 150, 1583bitr3d 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  <->  0  <  (
1  -  ( x ^ 2 ) ) ) )
160159biimpd 207 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  ->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
1611603impib 1185 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 )  -> 
0  <  ( 1  -  ( x ^
2 ) ) )
162141, 161sylbi 195 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
x ^ 2 ) ) )
163137, 162elrpd 11017 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR+ )
164 ioorp 11365 . . . . . . . . . . . . . . . 16  |-  ( 0 (,) +oo )  = 
RR+
165163, 164syl6eleqr 2528 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )
166 disjel 3718 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 0 (,) +oo )  i^i  ( -oo (,] 0 ) )  =  (/)  /\  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
167133, 165, 166sylancr 663 . . . . . . . . . . . . . 14  |-  ( x  e.  ( -u 1 (,) 1 )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
168125, 167syl 16 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  -.  ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 ) )
169 elioc2 11350 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) ) )
17052, 37, 169mp2an 672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) )
171170biimpi 194 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
( 1  -  (
x ^ 2 ) )  e.  RR  /\ -oo 
<  ( 1  -  ( x ^ 2 ) )  /\  (
1  -  ( x ^ 2 ) )  <_  0 ) )
172171simp1d 1000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
173 resubcl 9665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  e.  RR )
17495, 172, 173sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  e.  RR )
175 nncan 9630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  =  ( x ^ 2 ) )
17616, 175mpan 670 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x ^ 2 )  e.  CC  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  =  ( x ^
2 ) )
177176eleq1d 2503 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x ^ 2 )  e.  CC  ->  (
( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR  <->  ( x ^ 2 )  e.  RR ) )
178177biimpa 484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR )  ->  ( x ^
2 )  e.  RR )
179174, 178sylan2 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x ^ 2 )  e.  RR )
180172adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  e.  RR )
181171simp3d 1002 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  <_  0 )
182181adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  0 )
183 letr 9460 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 1  -  (
x ^ 2 ) )  e.  RR  /\  0  e.  RR  /\  1  e.  RR )  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18437, 95, 183mp3an23 1306 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
185145, 184mpan2i 677 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( 1  -  (
x ^ 2 ) )  <_  0  ->  ( 1  -  ( x ^ 2 ) )  <_  1 ) )
186180, 182, 185sylc 60 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  1 )
187 subge0 9844 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 0  <_ 
( 1  -  (
1  -  ( x ^ 2 ) ) )  <->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18895, 180, 187sylancr 663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 0  <_  (
1  -  ( 1  -  ( x ^
2 ) ) )  <-> 
( 1  -  (
x ^ 2 ) )  <_  1 ) )
189186, 188mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( 1  -  ( 1  -  ( x ^ 2 ) ) ) )
190176adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
1  -  ( x ^ 2 ) ) )  =  ( x ^ 2 ) )
191189, 190breqtrd 4309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( x ^ 2 ) )
192179, 191resqrcld 12896 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
19317, 192sylan 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
194 eleq1 2497 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  ( sqr `  (
x ^ 2 ) )  e.  RR ) )
195193, 194syl5ibrcom 222 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
196193renegcld 9767 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  -u ( sqr `  (
x ^ 2 ) )  e.  RR )
197 eleq1 2497 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  -u ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  -u ( sqr `  (
x ^ 2 ) )  e.  RR ) )
198196, 197syl5ibrcom 222 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  -u ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
199 eqid 2437 . . . . . . . . . . . . . . . . . . 19  |-  ( x ^ 2 )  =  ( x ^ 2 )
200 eqsqror 12846 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( ( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
20117, 200mpdan 668 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
202199, 201mpbii 211 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  (
x ^ 2 ) ) ) )
203202adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  ( x ^ 2 ) ) ) )
204195, 198, 203mpjaod 381 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  x  e.  RR )
205204ex 434 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  x  e.  RR ) )
206205con3dimp 441 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
20712, 206sylan 471 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
208168, 207pm2.61dan 789 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
209116, 208eldifd 3332 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
210209adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
211 2cnd 10386 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  2  e.  CC )
212 id 22 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x  e.  CC )
213211, 212mulcld 9398 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
214213negcld 9698 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  -u (
2  x.  x )  e.  CC )
215214adantl 466 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
2  x.  x )  e.  CC )
21612, 215sylan2 474 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  -u (
2  x.  x )  e.  CC )
21761sqrcld 12915 . . . . . . . . . . 11  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( sqr `  y )  e.  CC )
218217adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( sqr `  y )  e.  CC )
219 ovex 6111 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V
220219a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V )
22119adantl 466 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
22237a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  0  e.  RR )
223 1cnd 9394 . . . . . . . . . . . . . 14  |-  ( T. 
->  1  e.  CC )
22411, 223dvmptc 21401 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  1 ) )  =  ( x  e.  CC  |->  0 ) )
22517adantl 466 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
x ^ 2 )  e.  CC )
226 2cn 10384 . . . . . . . . . . . . . . 15  |-  2  e.  CC
227 mulcl 9358 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
228226, 227mpan 670 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
229228adantl 466 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
2  x.  x )  e.  CC )
230 2nn 10471 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
231 dvexp 21396 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) ) )
232230, 231ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) )
233 2m1e1 10428 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
234233oveq2i 6097 . . . . . . . . . . . . . . . . . 18  |-  ( x ^ ( 2  -  1 ) )  =  ( x ^ 1 )
235 exp1 11863 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
236234, 235syl5eq 2481 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x ^ ( 2  -  1 ) )  =  x )
237236oveq2d 6102 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
2  x.  ( x ^ ( 2  -  1 ) ) )  =  ( 2  x.  x ) )
238237mpteq2ia 4367 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( 2  x.  ( x ^
( 2  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
239232, 238eqtri 2457 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
240239a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( x ^ 2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) ) )
24111, 82, 222, 224, 225, 229, 240dvmptsub 21410 . . . . . . . . . . . 12  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) ) )
242 df-neg 9590 . . . . . . . . . . . . 13  |-  -u (
2  x.  x )  =  ( 0  -  ( 2  x.  x
) )
243242mpteq2i 4368 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  -u (
2  x.  x ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) )
244241, 243syl6eqr 2487 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  -u ( 2  x.  x
) ) )
24511, 221, 215, 244, 84, 90, 85, 108dvmptres 21406 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  D  |->  -u ( 2  x.  x
) ) )
246 eqid 2437 . . . . . . . . . . . 12  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
247246dvcnsqr 28421 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( sqr `  y
) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) )
248247a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( sqr `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) ) )
249 fveq2 5684 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  ( sqr `  y )  =  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )
250249oveq2d 6102 . . . . . . . . . . 11  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
251250oveq2d 6102 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  y
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
25211, 11, 210, 216, 218, 220, 245, 248, 249, 251dvmptco 21415 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) ) ) )
253 mulneg2 9774 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  -u x
)  =  -u (
2  x.  x ) )
254226, 12, 253sylancr 663 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  -u x
)  =  -u (
2  x.  x ) )
255254oveq1d 6101 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
25612negcld 9698 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u x  e.  CC )
257 eldifn 3472 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( CC  \ 
( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
258257, 3eleq2s 2529 . . . . . . . . . . . . . 14  |-  ( x  e.  D  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
259 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  -u 1  ->  x  =  -u 1 )
260 mnflt 11096 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u
1  e.  RR  -> -oo 
<  -u 1 )
26192, 260ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |- -oo  <  -u 1
262 ubioc1 11341 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\ -oo  <  -u 1 )  ->  -u 1  e.  ( -oo (,] -u 1
) )
26352, 138, 261, 262mp3an 1314 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  ( -oo (,] -u 1
)
264259, 263syl6eqel 2525 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u 1  ->  x  e.  ( -oo (,] -u 1
) )
265 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  1  ->  x  =  1 )
266 ltpnf 11094 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  RR  ->  1  < +oo )
26795, 266ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  1  < +oo
268 lbico1 11342 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  1  < +oo )  ->  1  e.  ( 1 [,) +oo ) )
269139, 127, 267, 268mp3an 1314 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ( 1 [,) +oo )
270265, 269syl6eqel 2525 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  x  e.  ( 1 [,) +oo ) )
271264, 270orim12i 516 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
272271orcoms 389 . . . . . . . . . . . . . . 15  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
273 elun 3490 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  <->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
274272, 273sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  x  e.  ( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )
275258, 274nsyl 121 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  -.  ( x  =  1  \/  x  =  -u 1
) )
276 1cnd 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  e.  CC )
27717adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  e.  CC )
27819adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  e.  CC )
279 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0 )
280278, 279sqr00d 12919 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  =  0 )
281276, 277, 280subeq0d 9719 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  =  ( x ^ 2 ) )
282152, 281syl5req 2482 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) )
283282ex 434 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) ) )
284 sqeqor 11972 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  1  e.  CC )  ->  ( ( x ^
2 )  =  ( 1 ^ 2 )  <-> 
( x  =  1  \/  x  =  -u
1 ) ) )
28516, 284mpan2 671 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( 1 ^ 2 )  <->  ( x  =  1  \/  x  =  -u 1 ) ) )
286283, 285sylibd 214 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x  =  1  \/  x  =  -u
1 ) ) )
287286necon3bd 2639 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -.  ( x  =  1  \/  x  =  -u
1 )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 ) )
28812, 275, 287sylc 60 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 )
289 2cnne0 10528 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2  =/=  0 )
290 divcan5 10025 . . . . . . . . . . . . 13  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
291289, 290mp3an3 1303 . . . . . . . . . . . 12  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( 2  x.  -u x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
292256, 117, 288, 291syl12anc 1216 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
293226, 12, 227sylancr 663 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  (
2  x.  x )  e.  CC )
294293negcld 9698 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u (
2  x.  x )  e.  CC )
295 mulcl 9358 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
296226, 117, 295sylancr 663 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
297 mulne0 9970 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( sqr `  ( 1  -  (
x ^ 2 ) ) )  e.  CC  /\  ( sqr `  (
1  -  ( x ^ 2 ) ) )  =/=  0 ) )  ->  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
298289, 297mpan 670 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =/=  0 )
299117, 288, 298syl2anc 661 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
300294, 296, 299divrec2d 10103 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -u ( 2  x.  x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  x.  -u (
2  x.  x ) ) )
301255, 292, 3003eqtr3rd 2478 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
302301mpteq2ia 4367 . . . . . . . . 9  |-  ( x  e.  D  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x
) ) )  =  ( x  e.  D  |->  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
303252, 302syl6eq 2485 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
30411, 77, 78, 114, 118, 120, 303dvmptadd 21403 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
305 mulcl 9358 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
30613, 20, 305sylancr 663 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
30712, 306syl 16 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
308307, 256, 117, 288divdird 10137 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
309 ixi 9957 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  _i )  = 
-u 1
310309eqcomi 2441 . . . . . . . . . . . . . . 15  |-  -u 1  =  ( _i  x.  _i )
311310oveq1i 6096 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  x )  =  ( ( _i  x.  _i )  x.  x )
312 mulm1 9778 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( -u 1  x.  x )  =  -u x )
313 mulass 9362 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
31413, 13, 313mp3an12 1304 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
315311, 312, 3143eqtr3a 2493 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  =  ( _i  x.  ( _i  x.  x
) ) )
316315oveq1d 6101 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  ( -u x  +  ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
317 negcl 9602 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  e.  CC )
318306, 317addcomd 9563 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( -u x  +  ( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
31913a1i 11 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  _i  e.  CC )
320319, 15, 20adddid 9402 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
321316, 318, 3203eqtr4d 2479 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
32212, 321syl 16 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
323322oveq1d 6101 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
32475, 117, 288divcan4d 10105 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  _i )
325324oveq1d 6101 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  +  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  +  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
326308, 323, 3253eqtr3rd 2478 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
327326mpteq2ia 4367 . . . . . . 7  |-  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
328304, 327syl6eq 2485 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
329246dvlog 22065 . . . . . . 7  |-  ( CC 
_D  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  |->  ( 1  / 
y ) )
330 logf1o 21985 . . . . . . . . . 10  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
331 f1of 5634 . . . . . . . . . 10  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
332330, 331mp1i 12 . . . . . . . . 9  |-  ( T. 
->  log : ( CC 
\  { 0 } ) --> ran  log )
333 snssi 4010 . . . . . . . . . . 11  |-  ( 0  e.  ( -oo (,] 0 )  ->  { 0 }  C_  ( -oo (,] 0 ) )
33466, 333ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  ( -oo (,] 0 )
335 sscon 3483 . . . . . . . . . 10  |-  ( { 0 }  C_  ( -oo (,] 0 )  -> 
( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
336334, 335mp1i 12 . . . . . . . . 9  |-  ( T. 
->  ( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
337332, 336feqresmpt 5738 . . . . . . . 8  |-  ( T. 
->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( log `  y
) ) )
338337oveq2d 6102 . . . . . . 7  |-  ( T. 
->  ( CC  _D  ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) ) )  =  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) ) )
339329, 338syl5reqr 2484 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  y ) ) )
340 fveq2 5684 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  ( log `  y )  =  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
341 oveq2 6094 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  (
1  /  y )  =  ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )
34211, 11, 58, 60, 72, 74, 328, 339, 340, 341dvmptco 21415 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) ) )
34322, 24reccld 10092 . . . . . . . 8  |-  ( x  e.  D  ->  (
1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
344 mulcl 9358 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  CC )  ->  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  e.  CC )
34513, 21, 344sylancr 663 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
34612, 345syl 16 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
347343, 346, 117, 288divassd 10134 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( ( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
348346, 22, 24divrec2d 10103 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
34975, 22, 24divcan4d 10105 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  _i )
350348, 349eqtr3d 2471 . . . . . . . 8  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )  =  _i )
351350oveq1d 6101 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
352347, 351eqtr3d 2471 . . . . . 6  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
353352mpteq2ia 4367 . . . . 5  |-  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
354342, 353syl6eq 2485 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
355 negicn 9603 . . . . 5  |-  -u _i  e.  CC
356355a1i 11 . . . 4  |-  ( T. 
->  -u _i  e.  CC )
35711, 26, 28, 354, 356dvmptcmul 21407 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
358357trud 1378 . 2  |-  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
35913, 13mulneg1i 9782 . . . . . 6  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
360309negeqi 9595 . . . . . 6  |-  -u (
_i  x.  _i )  =  -u -u 1
361 negneg1e1 10421 . . . . . 6  |-  -u -u 1  =  1
362359, 360, 3613eqtri 2461 . . . . 5  |-  ( -u _i  x.  _i )  =  1
363362oveq1i 6096 . . . 4  |-  ( (
-u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )
364 divass 10004 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  _i  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( -u _i  x.  _i )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
365355, 13, 364mp3an12 1304 . . . . 5  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( ( -u _i  x.  _i )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
366117, 288, 365syl2anc 661 . . . 4  |-  ( x  e.  D  ->  (
( -u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
367363, 366syl5reqr 2484 . . 3  |-  ( x  e.  D  ->  ( -u _i  x.  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
368367mpteq2ia 4367 . 2  |-  ( x  e.  D  |->  ( -u _i  x.  ( _i  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( 1  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
3699, 358, 3683eqtri 2461 1  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369   T. wtru 1370    e. wcel 1756    =/= wne 2600   _Vcvv 2966    \ cdif 3318    u. cun 3319    i^i cin 3320    C_ wss 3321   (/)c0 3630   {csn 3870   {cpr 3872   class class class wbr 4285    e. cmpt 4343   ran crn 4833    |` cres 4834   -->wf 5407   -1-1-onto->wf1o 5410   ` cfv 5411  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275   _ici 9276    + caddc 9277    x. cmul 9279   +oocpnf 9407   -oocmnf 9408   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   2c2 10363   RR+crp 10983   (,)cioo 11292   (,]cioc 11293   [,)cico 11294   ^cexp 11857   Recre 12578   sqrcsqr 12714   abscabs 12715   ↾t crest 14351   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17787  TopOnctopon 18468   Clsdccld 18589    _D cdv 21307   logclog 21975  arcsincasin 22226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-iin 4167  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-se 4672  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-isom 5420  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-tan 13349  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15537  df-cntz 15824  df-cmn 16268  df-psmet 17778  df-xmet 17779  df-met 17780  df-bl 17781  df-mopn 17782  df-fbas 17783  df-fg 17784  df-cnfld 17788  df-top 18472  df-bases 18474  df-topon 18475  df-topsp 18476  df-cld 18592  df-ntr 18593  df-cls 18594  df-nei 18671  df-lp 18709  df-perf 18710  df-cn 18800  df-cnp 18801  df-haus 18888  df-cmp 18959  df-tx 19104  df-hmeo 19297  df-fil 19388  df-fm 19480  df-flim 19481  df-flf 19482  df-xms 19864  df-ms 19865  df-tms 19866  df-cncf 20423  df-limc 21310  df-dv 21311  df-log 21977  df-cxp 21978  df-asin 22229
This theorem is referenced by:  dvacos  28424  dvreasin  28425
  Copyright terms: Public domain W3C validator