Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvasin Structured version   Unicode version

Theorem dvasin 31935
Description: Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
Assertion
Ref Expression
dvasin  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Distinct variable group:    x, D

Proof of Theorem dvasin
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-asin 23728 . . . . 5  |- arcsin  =  ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
21reseq1i 5058 . . . 4  |-  (arcsin  |`  D )  =  ( ( x  e.  CC  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )  |`  D )
3 dvasin.d . . . . . 6  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
4 difss 3530 . . . . . 6  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  C_  CC
53, 4eqsstri 3432 . . . . 5  |-  D  C_  CC
6 resmpt 5111 . . . . 5  |-  ( D 
C_  CC  ->  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
75, 6ax-mp 5 . . . 4  |-  ( ( x  e.  CC  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
82, 7eqtri 2445 . . 3  |-  (arcsin  |`  D )  =  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
98oveq2i 6255 . 2  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )
10 cnelprrecn 9578 . . . . 5  |-  CC  e.  { RR ,  CC }
1110a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
125sseli 3398 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
13 ax-icn 9544 . . . . . . . . 9  |-  _i  e.  CC
14 mulcl 9569 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  x.  x
)  e.  CC )
1513, 14mpan 674 . . . . . . . 8  |-  ( x  e.  CC  ->  (
_i  x.  x )  e.  CC )
16 ax-1cn 9543 . . . . . . . . . 10  |-  1  e.  CC
17 sqcl 12282 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
x ^ 2 )  e.  CC )
18 subcl 9820 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( x ^ 2 ) )  e.  CC )
1916, 17, 18sylancr 667 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
2019sqrtcld 13437 . . . . . . . 8  |-  ( x  e.  CC  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
2115, 20addcld 9608 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
2212, 21syl 17 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
23 asinlem 23731 . . . . . . 7  |-  ( x  e.  CC  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2412, 23syl 17 . . . . . 6  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
2522, 24logcld 23457 . . . . 5  |-  ( x  e.  D  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
2625adantl 467 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
27 ovex 6272 . . . . 5  |-  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
2827a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
29 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR )
30 asinlem3 23734 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
31 rere 13124 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3231breq2d 4373 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  <->  0  <_  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
3332biimpac 488 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( Re `  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR )  ->  0  <_  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )
3430, 33sylan 473 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <_  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
3523adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
3629, 34, 35ne0gt0d 9718 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  0  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
37 0re 9589 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltnle 9659 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
3937, 38mpan 674 . . . . . . . . . . . . . . . 16  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  ->  ( 0  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
4039adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  ( 0  < 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4136, 40mpbid 213 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR )  ->  -.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)
4241ex 435 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4312, 42syl 17 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
44 imor 413 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
) )
4543, 44sylib 199 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
4645orcomd 389 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) )
4746olcd 394 . . . . . . . . 9  |-  ( x  e.  D  ->  ( -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR ) ) )
48 3ianor 999 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 )  <->  ( -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  \/  -. -oo  <  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  \/  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) )
49 3orrot 988 . . . . . . . . . . 11  |-  ( ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  \/  -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0
)  <->  ( -. -oo  <  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0  \/  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR ) )
50 3orass 985 . . . . . . . . . . 11  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/ 
-.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) 
<->  ( -. -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) ) )
5148, 49, 503bitrri 275 . . . . . . . . . 10  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
52 mnfxr 11360 . . . . . . . . . . 11  |- -oo  e.  RR*
53 elioc2 11643 . . . . . . . . . . 11  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  <_  0 ) ) )
5452, 37, 53mp2an 676 . . . . . . . . . 10  |-  ( ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /\  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  <_ 
0 ) )
5551, 54xchbinxr 312 . . . . . . . . 9  |-  ( ( -. -oo  <  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  \/  ( -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  <_  0  \/  -.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  RR ) )  <->  -.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( -oo (,] 0
) )
5647, 55sylib 199 . . . . . . . 8  |-  ( x  e.  D  ->  -.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
5722, 56eldifd 3385 . . . . . . 7  |-  ( x  e.  D  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
5857adantl 467 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) ) )
59 ovex 6272 . . . . . . 7  |-  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
6059a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V )
61 eldifi 3525 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  e.  CC )
62 eldifn 3526 . . . . . . . . 9  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  -.  y  e.  ( -oo (,] 0
) )
63 0xr 9633 . . . . . . . . . . . 12  |-  0  e.  RR*
64 mnflt0 11373 . . . . . . . . . . . 12  |- -oo  <  0
65 ubioc1 11634 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ -oo  <  0 )  ->  0  e.  ( -oo (,] 0
) )
6652, 63, 64, 65mp3an 1360 . . . . . . . . . . 11  |-  0  e.  ( -oo (,] 0
)
67 eleq1 2489 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
y  e.  ( -oo (,] 0 )  <->  0  e.  ( -oo (,] 0 ) ) )
6866, 67mpbiri 236 . . . . . . . . . 10  |-  ( y  =  0  ->  y  e.  ( -oo (,] 0
) )
6968necon3bi 2622 . . . . . . . . 9  |-  ( -.  y  e.  ( -oo (,] 0 )  ->  y  =/=  0 )
7062, 69syl 17 . . . . . . . 8  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  y  =/=  0 )
7161, 70logcld 23457 . . . . . . 7  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( log `  y )  e.  CC )
7271adantl 467 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( log `  y )  e.  CC )
73 ovex 6272 . . . . . . 7  |-  ( 1  /  y )  e. 
_V
7473a1i 11 . . . . . 6  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  y )  e. 
_V )
7513a1i 11 . . . . . . . . . 10  |-  ( x  e.  D  ->  _i  e.  CC )
7675, 12mulcld 9609 . . . . . . . . 9  |-  ( x  e.  D  ->  (
_i  x.  x )  e.  CC )
7776adantl 467 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  (
_i  x.  x )  e.  CC )
7813a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  _i  e.  CC )
7912adantl 467 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  x  e.  CC )
80 1cnd 9605 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  1  e.  CC )
81 simpr 462 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
82 1cnd 9605 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
8311dvmptid 22848 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
845a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  C_  CC )
85 eqid 2423 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8685cnfldtopon 21740 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8786toponunii 19884 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
8887restid 15270 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8986, 88ax-mp 5 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
9089eqcomi 2432 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
9185recld2 21769 . . . . . . . . . . . . . . 15  |-  RR  e.  ( Clsd `  ( TopOpen ` fld ) )
92 neg1rr 10660 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  RR
93 iocmnfcld 21726 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  e.  RR  ->  ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( -oo (,] -u 1 )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
95 1re 9588 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
96 icopnfcld 21725 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  RR  ->  (
1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
98 uncld 19993 . . . . . . . . . . . . . . . . 17  |-  ( ( ( -oo (,] -u 1
)  e.  ( Clsd `  ( topGen `  ran  (,) )
)  /\  ( 1 [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )  ->  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
9994, 97, 98mp2an 676 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( topGen `
 ran  (,) )
)
10085tgioo2 21758 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101100fveq2i 5823 . . . . . . . . . . . . . . . 16  |-  ( Clsd `  ( topGen `  ran  (,) )
)  =  ( Clsd `  ( ( TopOpen ` fld )t  RR ) )
10299, 101eleqtri 2499 . . . . . . . . . . . . . . 15  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) )
103 restcldr 20127 . . . . . . . . . . . . . . 15  |-  ( ( RR  e.  ( Clsd `  ( TopOpen ` fld ) )  /\  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  (
( TopOpen ` fld )t  RR ) ) )  ->  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  e.  (
Clsd `  ( TopOpen ` fld ) ) )
10491, 102, 103mp2an 676 . . . . . . . . . . . . . 14  |-  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )
10587cldopn 19983 . . . . . . . . . . . . . 14  |-  ( ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) )  e.  ( Clsd `  ( TopOpen
` fld
) )  ->  ( CC  \  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld ) )
106104, 105ax-mp 5 . . . . . . . . . . . . 13  |-  ( CC 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  e.  ( TopOpen ` fld )
1073, 106eqeltri 2497 . . . . . . . . . . . 12  |-  D  e.  ( TopOpen ` fld )
108107a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  D  e.  ( TopOpen
` fld
) )
10911, 81, 82, 83, 84, 90, 85, 108dvmptres 22854 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  x ) )  =  ( x  e.  D  |->  1 ) )
11013a1i 11 . . . . . . . . . 10  |-  ( T. 
->  _i  e.  CC )
11111, 79, 80, 109, 110dvmptcmul 22855 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  ( _i  x.  1 ) ) )
11213mulid1i 9591 . . . . . . . . . 10  |-  ( _i  x.  1 )  =  _i
113112mpteq2i 4445 . . . . . . . . 9  |-  ( x  e.  D  |->  ( _i  x.  1 ) )  =  ( x  e.  D  |->  _i )
114111, 113syl6eq 2473 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( _i  x.  x ) ) )  =  ( x  e.  D  |->  _i ) )
11512sqcld 12359 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
x ^ 2 )  e.  CC )
11616, 115, 18sylancr 667 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
117116sqrtcld 13437 . . . . . . . . 9  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
118117adantl 467 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  e.  CC )
119 ovex 6272 . . . . . . . . 9  |-  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  e.  _V
120119a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  D )  ->  ( -u x  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e. 
_V )
121 elin 3587 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  <->  ( x  e.  D  /\  x  e.  RR ) )
1223asindmre 31934 . . . . . . . . . . . . . . . . 17  |-  ( D  i^i  RR )  =  ( -u 1 (,) 1 )
123122eqimssi 3456 . . . . . . . . . . . . . . . 16  |-  ( D  i^i  RR )  C_  ( -u 1 (,) 1
)
124123sseli 3398 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( D  i^i  RR )  ->  x  e.  ( -u 1 (,) 1
) )
125121, 124sylbir 216 . . . . . . . . . . . . . 14  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  x  e.  ( -u
1 (,) 1 ) )
126 incom 3593 . . . . . . . . . . . . . . . 16  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  ( ( -oo (,] 0
)  i^i  ( 0 (,) +oo ) )
127 pnfxr 11358 . . . . . . . . . . . . . . . . 17  |- +oo  e.  RR*
128 df-ioc 11586 . . . . . . . . . . . . . . . . . 18  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
129 df-ioo 11585 . . . . . . . . . . . . . . . . . 18  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
130 xrltnle 9647 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR*  /\  w  e.  RR* )  ->  (
0  <  w  <->  -.  w  <_  0 ) )
131128, 129, 130ixxdisj 11596 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/) )
13252, 63, 127, 131mp3an 1360 . . . . . . . . . . . . . . . 16  |-  ( ( -oo (,] 0 )  i^i  ( 0 (,) +oo ) )  =  (/)
133126, 132eqtri 2445 . . . . . . . . . . . . . . 15  |-  ( ( 0 (,) +oo )  i^i  ( -oo (,] 0
) )  =  (/)
134 elioore 11612 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  e.  RR )
135134resqcld 12387 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
x ^ 2 )  e.  RR )
136 resubcl 9884 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( 1  -  ( x ^ 2 ) )  e.  RR )
13795, 135, 136sylancr 667 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
13892rexri 9639 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  RR*
13995rexri 9639 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
140 elioo2 11623 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( x  e.  (
-u 1 (,) 1
)  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) ) )
141138, 139, 140mp2an 676 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( -u 1 (,) 1 )  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) )
142 recn 9575 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  x  e.  CC )
143142abscld 13436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
144142absge0d 13444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  0  <_  ( abs `  x
) )
145 0le1 10083 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <_  1
146 lt2sq 12293 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( abs `  x )  <  1  <->  ( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 ) ) )
14795, 145, 146mpanr12 689 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
148143, 144, 147syl2anc 665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( ( abs `  x ) ^
2 )  <  (
1 ^ 2 ) ) )
149 abslt 13316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
15095, 149mpan2 675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( abs `  x
)  <  1  <->  ( -u 1  <  x  /\  x  <  1 ) ) )
151 absresq 13304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
152 sq1 12314 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ^ 2 )  =  1
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
1 ^ 2 )  =  1 )
154151, 153breq12d 4374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( x ^ 2 )  <  1 ) )
155 resqcl 12287 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
x ^ 2 )  e.  RR )
156 posdif 10053 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( x ^
2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
157155, 95, 156sylancl 666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (
( x ^ 2 )  <  1  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
158154, 157bitrd 256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( ( abs `  x
) ^ 2 )  <  ( 1 ^ 2 )  <->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
159148, 150, 1583bitr3d 286 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  <->  0  <  (
1  -  ( x ^ 2 ) ) ) )
160159biimpd 210 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u 1  <  x  /\  x  <  1
)  ->  0  <  ( 1  -  ( x ^ 2 ) ) ) )
1611603impib 1203 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 )  -> 
0  <  ( 1  -  ( x ^
2 ) ) )
162141, 161sylbi 198 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
x ^ 2 ) ) )
163137, 162elrpd 11284 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR+ )
164 ioorp 11658 . . . . . . . . . . . . . . . 16  |-  ( 0 (,) +oo )  = 
RR+
165163, 164syl6eleqr 2512 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )
166 disjel 3779 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 0 (,) +oo )  i^i  ( -oo (,] 0 ) )  =  (/)  /\  (
1  -  ( x ^ 2 ) )  e.  ( 0 (,) +oo ) )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
167133, 165, 166sylancr 667 . . . . . . . . . . . . . 14  |-  ( x  e.  ( -u 1 (,) 1 )  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
168125, 167syl 17 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  x  e.  RR )  ->  -.  ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 ) )
169 elioc2 11643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) ) )
17052, 37, 169mp2an 676 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  <->  ( (
1  -  ( x ^ 2 ) )  e.  RR  /\ -oo  <  ( 1  -  (
x ^ 2 ) )  /\  ( 1  -  ( x ^
2 ) )  <_ 
0 ) )
171170biimpi 197 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
( 1  -  (
x ^ 2 ) )  e.  RR  /\ -oo 
<  ( 1  -  ( x ^ 2 ) )  /\  (
1  -  ( x ^ 2 ) )  <_  0 ) )
172171simp1d 1017 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  e.  RR )
173 resubcl 9884 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  e.  RR )
17495, 172, 173sylancr 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  e.  RR )
175 nncan 9849 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( 1  -  ( 1  -  (
x ^ 2 ) ) )  =  ( x ^ 2 ) )
17616, 175mpan 674 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x ^ 2 )  e.  CC  ->  (
1  -  ( 1  -  ( x ^
2 ) ) )  =  ( x ^
2 ) )
177176eleq1d 2485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x ^ 2 )  e.  CC  ->  (
( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR  <->  ( x ^ 2 )  e.  RR ) )
178177biimpa 486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
1  -  ( x ^ 2 ) ) )  e.  RR )  ->  ( x ^
2 )  e.  RR )
179174, 178sylan2 476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x ^ 2 )  e.  RR )
180172adantl 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  e.  RR )
181171simp3d 1019 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  ( -oo (,] 0 )  ->  (
1  -  ( x ^ 2 ) )  <_  0 )
182181adantl 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  0 )
183 letr 9673 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1  -  (
x ^ 2 ) )  e.  RR  /\  0  e.  RR  /\  1  e.  RR )  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18437, 95, 183mp3an23 1352 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( ( 1  -  ( x ^ 2 ) )  <_  0  /\  0  <_  1 )  ->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
185145, 184mpan2i 681 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  -  ( x ^ 2 ) )  e.  RR  ->  (
( 1  -  (
x ^ 2 ) )  <_  0  ->  ( 1  -  ( x ^ 2 ) )  <_  1 ) )
186180, 182, 185sylc 62 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
x ^ 2 ) )  <_  1 )
187 subge0 10073 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  ( 1  -  (
x ^ 2 ) )  e.  RR )  ->  ( 0  <_ 
( 1  -  (
1  -  ( x ^ 2 ) ) )  <->  ( 1  -  ( x ^ 2 ) )  <_  1
) )
18895, 180, 187sylancr 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 0  <_  (
1  -  ( 1  -  ( x ^
2 ) ) )  <-> 
( 1  -  (
x ^ 2 ) )  <_  1 ) )
189186, 188mpbird 235 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( 1  -  ( 1  -  ( x ^ 2 ) ) ) )
190176adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( 1  -  (
1  -  ( x ^ 2 ) ) )  =  ( x ^ 2 ) )
191189, 190breqtrd 4386 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
0  <_  ( x ^ 2 ) )
192179, 191resqrtcld 13418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x ^ 2 )  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
19317, 192sylan 473 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( sqr `  (
x ^ 2 ) )  e.  RR )
194 eleq1 2489 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  ( sqr `  (
x ^ 2 ) )  e.  RR ) )
195193, 194syl5ibrcom 225 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
196193renegcld 9992 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  -u ( sqr `  (
x ^ 2 ) )  e.  RR )
197 eleq1 2489 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u ( sqr `  (
x ^ 2 ) )  ->  ( x  e.  RR  <->  -u ( sqr `  (
x ^ 2 ) )  e.  RR ) )
198196, 197syl5ibrcom 225 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  -u ( sqr `  ( x ^ 2 ) )  ->  x  e.  RR ) )
199 eqid 2423 . . . . . . . . . . . . . . . . . 18  |-  ( x ^ 2 )  =  ( x ^ 2 )
200 eqsqrtor 13368 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( x ^ 2 )  e.  CC )  ->  ( ( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
20117, 200mpdan 672 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( x ^ 2 )  <->  ( x  =  ( sqr `  (
x ^ 2 ) )  \/  x  = 
-u ( sqr `  (
x ^ 2 ) ) ) ) )
202199, 201mpbii 214 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  (
x ^ 2 ) ) ) )
203202adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  -> 
( x  =  ( sqr `  ( x ^ 2 ) )  \/  x  =  -u ( sqr `  ( x ^ 2 ) ) ) )
204195, 198, 203mpjaod 382 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )  ->  x  e.  RR )
205204stoic1a 1649 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
20612, 205sylan 473 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  -.  x  e.  RR )  ->  -.  ( 1  -  ( x ^
2 ) )  e.  ( -oo (,] 0
) )
207168, 206pm2.61dan 798 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -.  ( 1  -  (
x ^ 2 ) )  e.  ( -oo (,] 0 ) )
208116, 207eldifd 3385 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
209208adantl 467 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  (
1  -  ( x ^ 2 ) )  e.  ( CC  \ 
( -oo (,] 0 ) ) )
210 2cnd 10628 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  2  e.  CC )
211 id 22 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x  e.  CC )
212210, 211mulcld 9609 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
213212negcld 9919 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  -u (
2  x.  x )  e.  CC )
214213adantl 467 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
2  x.  x )  e.  CC )
21512, 214sylan2 476 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  D )  ->  -u (
2  x.  x )  e.  CC )
21661sqrtcld 13437 . . . . . . . . . . 11  |-  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  ( sqr `  y )  e.  CC )
217216adantl 467 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( sqr `  y )  e.  CC )
218 ovex 6272 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V
219218a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( CC  \  ( -oo (,] 0 ) ) )  ->  ( 1  /  ( 2  x.  ( sqr `  y
) ) )  e. 
_V )
22019adantl 467 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  -  ( x ^ 2 ) )  e.  CC )
22137a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  0  e.  RR )
222 1cnd 9605 . . . . . . . . . . . . . 14  |-  ( T. 
->  1  e.  CC )
22311, 222dvmptc 22849 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  1 ) )  =  ( x  e.  CC  |->  0 ) )
22417adantl 467 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
x ^ 2 )  e.  CC )
225 2cn 10626 . . . . . . . . . . . . . . 15  |-  2  e.  CC
226 mulcl 9569 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
227225, 226mpan 674 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
228227adantl 467 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  (
2  x.  x )  e.  CC )
229 2nn 10713 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
230 dvexp 22844 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) ) )
231229, 230ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  ( x ^ (
2  -  1 ) ) ) )
232 2m1e1 10670 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
233232oveq2i 6255 . . . . . . . . . . . . . . . . . 18  |-  ( x ^ ( 2  -  1 ) )  =  ( x ^ 1 )
234 exp1 12223 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
235233, 234syl5eq 2469 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x ^ ( 2  -  1 ) )  =  x )
236235oveq2d 6260 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
2  x.  ( x ^ ( 2  -  1 ) ) )  =  ( 2  x.  x ) )
237236mpteq2ia 4444 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( 2  x.  ( x ^
( 2  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
238231, 237eqtri 2445 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) )
239238a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( x ^ 2 ) ) )  =  ( x  e.  CC  |->  ( 2  x.  x ) ) )
24011, 82, 221, 223, 224, 228, 239dvmptsub 22858 . . . . . . . . . . . 12  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) ) )
241 df-neg 9809 . . . . . . . . . . . . 13  |-  -u (
2  x.  x )  =  ( 0  -  ( 2  x.  x
) )
242241mpteq2i 4445 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  -u (
2  x.  x ) )  =  ( x  e.  CC  |->  ( 0  -  ( 2  x.  x ) ) )
243240, 242syl6eqr 2475 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  CC  |->  -u ( 2  x.  x
) ) )
24411, 220, 214, 243, 84, 90, 85, 108dvmptres 22854 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( 1  -  ( x ^ 2 ) ) ) )  =  ( x  e.  D  |->  -u ( 2  x.  x
) ) )
245 eqid 2423 . . . . . . . . . . . 12  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
246245dvcnsqrt 23621 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( sqr `  y
) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) )
247246a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( sqr `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  ( 2  x.  ( sqr `  y
) ) ) ) )
248 fveq2 5820 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  ( sqr `  y )  =  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )
249248oveq2d 6260 . . . . . . . . . . 11  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
250249oveq2d 6260 . . . . . . . . . 10  |-  ( y  =  ( 1  -  ( x ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  y
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
25111, 11, 209, 215, 217, 219, 244, 247, 248, 250dvmptco 22863 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) ) ) )
252 mulneg2 10002 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  -u x
)  =  -u (
2  x.  x ) )
253225, 12, 252sylancr 667 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  -u x
)  =  -u (
2  x.  x ) )
254253oveq1d 6259 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
25512negcld 9919 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u x  e.  CC )
256 eldifn 3526 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( CC  \ 
( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
257256, 3eleq2s 2519 . . . . . . . . . . . . . 14  |-  ( x  e.  D  ->  -.  x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
258 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  -u 1  ->  x  =  -u 1 )
259 mnflt 11371 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u
1  e.  RR  -> -oo 
<  -u 1 )
26092, 259ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |- -oo  <  -u 1
261 ubioc1 11634 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\ -oo  <  -u 1 )  ->  -u 1  e.  ( -oo (,] -u 1
) )
26252, 138, 260, 261mp3an 1360 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  ( -oo (,] -u 1
)
263258, 262syl6eqel 2509 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u 1  ->  x  e.  ( -oo (,] -u 1
) )
264 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  1  ->  x  =  1 )
265 ltpnf 11368 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  RR  ->  1  < +oo )
26695, 265ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  1  < +oo
267 lbico1 11635 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  1  < +oo )  ->  1  e.  ( 1 [,) +oo ) )
268139, 127, 266, 267mp3an 1360 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ( 1 [,) +oo )
269264, 268syl6eqel 2509 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  x  e.  ( 1 [,) +oo ) )
270263, 269orim12i 518 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
271270orcoms 390 . . . . . . . . . . . . . . 15  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
272 elun 3544 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) )  <->  ( x  e.  ( -oo (,] -u 1
)  \/  x  e.  ( 1 [,) +oo ) ) )
273271, 272sylibr 215 . . . . . . . . . . . . . 14  |-  ( ( x  =  1  \/  x  =  -u 1
)  ->  x  e.  ( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )
274257, 273nsyl 124 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  -.  ( x  =  1  \/  x  =  -u 1
) )
275 1cnd 9605 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  e.  CC )
27617adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  e.  CC )
27719adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  e.  CC )
278 simpr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0 )
279277, 278sqr00d 13441 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( 1  -  (
x ^ 2 ) )  =  0 )
280275, 276, 279subeq0d 9940 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
1  =  ( x ^ 2 ) )
281152, 280syl5req 2470 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =  0 )  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) )
282281ex 435 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x ^ 2 )  =  ( 1 ^ 2 ) ) )
283 sqeqor 12333 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  1  e.  CC )  ->  ( ( x ^
2 )  =  ( 1 ^ 2 )  <-> 
( x  =  1  \/  x  =  -u
1 ) ) )
28416, 283mpan2 675 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  ( 1 ^ 2 )  <->  ( x  =  1  \/  x  =  -u 1 ) ) )
285282, 284sylibd 217 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( sqr `  (
1  -  ( x ^ 2 ) ) )  =  0  -> 
( x  =  1  \/  x  =  -u
1 ) ) )
286285necon3bd 2610 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -.  ( x  =  1  \/  x  =  -u
1 )  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 ) )
28712, 274, 286sylc 62 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  ( sqr `  ( 1  -  ( x ^ 2 ) ) )  =/=  0 )
288 2cnne0 10770 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2  =/=  0 )
289 divcan5 10255 . . . . . . . . . . . . 13  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
290288, 289mp3an3 1349 . . . . . . . . . . . 12  |-  ( (
-u x  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( 2  x.  -u x )  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
291255, 117, 287, 290syl12anc 1262 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( 2  x.  -u x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
292225, 12, 226sylancr 667 . . . . . . . . . . . . 13  |-  ( x  e.  D  ->  (
2  x.  x )  e.  CC )
293292negcld 9919 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  -u (
2  x.  x )  e.  CC )
294 mulcl 9569 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
295225, 117, 294sylancr 667 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
296 mulne0 10200 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( sqr `  ( 1  -  (
x ^ 2 ) ) )  e.  CC  /\  ( sqr `  (
1  -  ( x ^ 2 ) ) )  =/=  0 ) )  ->  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =/=  0
)
297288, 296mpan 674 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =/=  0 )
298117, 287, 297syl2anc 665 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =/=  0 )
299293, 295, 298divrec2d 10333 . . . . . . . . . . 11  |-  ( x  e.  D  ->  ( -u ( 2  x.  x
)  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )  x.  -u (
2  x.  x ) ) )
300254, 291, 2993eqtr3rd 2466 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x ) )  =  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
301300mpteq2ia 4444 . . . . . . . . 9  |-  ( x  e.  D  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  -u ( 2  x.  x
) ) )  =  ( x  e.  D  |->  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
302251, 301syl6eq 2473 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  =  ( x  e.  D  |->  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
30311, 77, 78, 114, 118, 120, 302dvmptadd 22851 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
304 mulcl 9569 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  e.  CC )  -> 
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  e.  CC )
30513, 20, 304sylancr 667 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
30612, 305syl 17 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
_i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  e.  CC )
307306, 255, 117, 287divdird 10367 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
308 ixi 10187 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  _i )  = 
-u 1
309308eqcomi 2432 . . . . . . . . . . . . . . 15  |-  -u 1  =  ( _i  x.  _i )
310309oveq1i 6254 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  x )  =  ( ( _i  x.  _i )  x.  x )
311 mulm1 10006 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( -u 1  x.  x )  =  -u x )
312 mulass 9573 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
31313, 13, 312mp3an12 1350 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( _i  x.  _i )  x.  x )  =  ( _i  x.  ( _i  x.  x
) ) )
314310, 311, 3133eqtr3a 2481 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  =  ( _i  x.  ( _i  x.  x
) ) )
315314oveq1d 6259 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  ( -u x  +  ( _i  x.  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
316 negcl 9821 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  -u x  e.  CC )
317305, 316addcomd 9781 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( -u x  +  ( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
31813a1i 11 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  _i  e.  CC )
319318, 15, 20adddid 9613 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( _i  x.  x
) )  +  ( _i  x.  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
320315, 317, 3193eqtr4d 2467 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
32112, 320syl 17 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  +  -u x )  =  ( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
322321oveq1d 6259 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  +  -u x
)  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
32375, 117, 287divcan4d 10335 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( _i  x.  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  _i )
324323oveq1d 6259 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( _i  x.  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )  +  ( -u x  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  +  (
-u x  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
325307, 322, 3243eqtr3rd 2466 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
326325mpteq2ia 4444 . . . . . . 7  |-  ( x  e.  D  |->  ( _i  +  ( -u x  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
327303, 326syl6eq 2473 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( ( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
328245dvlog 23533 . . . . . . 7  |-  ( CC 
_D  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( y  e.  ( CC  \ 
( -oo (,] 0 ) )  |->  ( 1  / 
y ) )
329 logf1o 23451 . . . . . . . . . 10  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
330 f1of 5769 . . . . . . . . . 10  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
331329, 330mp1i 13 . . . . . . . . 9  |-  ( T. 
->  log : ( CC 
\  { 0 } ) --> ran  log )
332 snssi 4082 . . . . . . . . . . 11  |-  ( 0  e.  ( -oo (,] 0 )  ->  { 0 }  C_  ( -oo (,] 0 ) )
33366, 332ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  ( -oo (,] 0 )
334 sscon 3537 . . . . . . . . . 10  |-  ( { 0 }  C_  ( -oo (,] 0 )  -> 
( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
335333, 334mp1i 13 . . . . . . . . 9  |-  ( T. 
->  ( CC  \  ( -oo (,] 0 ) ) 
C_  ( CC  \  { 0 } ) )
336331, 335feqresmpt 5874 . . . . . . . 8  |-  ( T. 
->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  =  ( y  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( log `  y
) ) )
337336oveq2d 6260 . . . . . . 7  |-  ( T. 
->  ( CC  _D  ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) ) )  =  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) ) )
338328, 337syl5reqr 2472 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( log `  y ) ) )  =  ( y  e.  ( CC 
\  ( -oo (,] 0 ) )  |->  ( 1  /  y ) ) )
339 fveq2 5820 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  ( log `  y )  =  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
340 oveq2 6252 . . . . . 6  |-  ( y  =  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  ->  (
1  /  y )  =  ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )
34111, 11, 58, 60, 72, 74, 327, 338, 339, 340dvmptco 22863 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) ) )
34222, 24reccld 10322 . . . . . . . 8  |-  ( x  e.  D  ->  (
1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
343 mulcl 9569 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) )  e.  CC )  ->  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  e.  CC )
34413, 21, 343sylancr 667 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
34512, 344syl 17 . . . . . . . 8  |-  ( x  e.  D  ->  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  e.  CC )
346342, 345, 117, 287divassd 10364 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( ( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
347345, 22, 24divrec2d 10333 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )
34875, 22, 24divcan4d 10335 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( _i  x.  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  _i )
349347, 348eqtr3d 2459 . . . . . . . 8  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) ) )  =  _i )
350349oveq1d 6259 . . . . . . 7  |-  ( x  e.  D  ->  (
( ( 1  / 
( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  x.  (
_i  x.  ( (
_i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
351346, 350eqtr3d 2459 . . . . . 6  |-  ( x  e.  D  ->  (
( 1  /  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
352351mpteq2ia 4444 . . . . 5  |-  ( x  e.  D  |->  ( ( 1  /  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  x.  ( ( _i  x.  ( ( _i  x.  x )  +  ( sqr `  ( 1  -  ( x ^
2 ) ) ) ) )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) )
353341, 352syl6eq 2473 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )
354 negicn 9822 . . . . 5  |-  -u _i  e.  CC
355354a1i 11 . . . 4  |-  ( T. 
->  -u _i  e.  CC )
35611, 26, 28, 353, 355dvmptcmul 22855 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  D  |->  (
-u _i  x.  ( log `  ( ( _i  x.  x )  +  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
357356trud 1446 . 2  |-  ( CC 
_D  ( x  e.  D  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) ) )  =  ( x  e.  D  |->  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
35813, 13mulneg1i 10010 . . . . . 6  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
359308negeqi 9814 . . . . . 6  |-  -u (
_i  x.  _i )  =  -u -u 1
360 negneg1e1 10663 . . . . . 6  |-  -u -u 1  =  1
361358, 359, 3603eqtri 2449 . . . . 5  |-  ( -u _i  x.  _i )  =  1
362361oveq1i 6254 . . . 4  |-  ( (
-u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) )
363 divass 10234 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  _i  e.  CC  /\  ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 ) )  ->  ( ( -u _i  x.  _i )  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
364354, 13, 363mp3an12 1350 . . . . 5  |-  ( ( ( sqr `  (
1  -  ( x ^ 2 ) ) )  e.  CC  /\  ( sqr `  ( 1  -  ( x ^
2 ) ) )  =/=  0 )  -> 
( ( -u _i  x.  _i )  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) )  =  ( -u _i  x.  ( _i  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) ) )
365117, 287, 364syl2anc 665 . . . 4  |-  ( x  e.  D  ->  (
( -u _i  x.  _i )  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) )  =  (
-u _i  x.  (
_i  /  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) )
366362, 365syl5reqr 2472 . . 3  |-  ( x  e.  D  ->  ( -u _i  x.  ( _i 
/  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )  =  ( 1  /  ( sqr `  ( 1  -  ( x ^ 2 ) ) ) ) )
367366mpteq2ia 4444 . 2  |-  ( x  e.  D  |->  ( -u _i  x.  ( _i  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) ) )  =  ( x  e.  D  |->  ( 1  / 
( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
3689, 357, 3673eqtri 2449 1  |-  ( CC 
_D  (arcsin  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  ( sqr `  (
1  -  ( x ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437   T. wtru 1438    e. wcel 1872    =/= wne 2594   _Vcvv 3017    \ cdif 3371    u. cun 3372    i^i cin 3373    C_ wss 3374   (/)c0 3699   {csn 3936   {cpr 3938   class class class wbr 4361    |-> cmpt 4420   ran crn 4792    |` cres 4793   -->wf 5535   -1-1-onto->wf1o 5538   ` cfv 5539  (class class class)co 6244   CCcc 9483   RRcr 9484   0cc0 9485   1c1 9486   _ici 9487    + caddc 9488    x. cmul 9490   +oocpnf 9618   -oocmnf 9619   RR*cxr 9620    < clt 9621    <_ cle 9622    - cmin 9806   -ucneg 9807    / cdiv 10215   NNcn 10555   2c2 10605   RR+crp 11248   (,)cioo 11581   (,]cioc 11582   [,)cico 11583   ^cexp 12217   Recre 13099   sqrcsqrt 13235   abscabs 13236   ↾t crest 15257   TopOpenctopn 15258   topGenctg 15274  ℂfldccnfld 18908  TopOnctopon 19855   Clsdccld 19968    _D cdv 22755   logclog 23441  arcsincasin 23725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562  ax-pre-sup 9563  ax-addf 9564  ax-mulf 9565
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-iin 4240  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-se 4751  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-isom 5548  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-of 6484  df-om 6646  df-1st 6746  df-2nd 6747  df-supp 6865  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7473  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-fsupp 7832  df-fi 7873  df-sup 7904  df-inf 7905  df-oi 7973  df-card 8320  df-cda 8544  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-div 10216  df-nn 10556  df-2 10614  df-3 10615  df-4 10616  df-5 10617  df-6 10618  df-7 10619  df-8 10620  df-9 10621  df-10 10622  df-n0 10816  df-z 10884  df-dec 10998  df-uz 11106  df-q 11211  df-rp 11249  df-xneg 11355  df-xadd 11356  df-xmul 11357  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11731  df-fzo 11862  df-fl 11973  df-mod 12042  df-seq 12159  df-exp 12218  df-fac 12405  df-bc 12433  df-hash 12461  df-shft 13069  df-cj 13101  df-re 13102  df-im 13103  df-sqrt 13237  df-abs 13238  df-limsup 13464  df-clim 13490  df-rlim 13491  df-sum 13691  df-ef 14059  df-sin 14061  df-cos 14062  df-tan 14063  df-pi 14064  df-struct 15061  df-ndx 15062  df-slot 15063  df-base 15064  df-sets 15065  df-ress 15066  df-plusg 15141  df-mulr 15142  df-starv 15143  df-sca 15144  df-vsca 15145  df-ip 15146  df-tset 15147  df-ple 15148  df-ds 15150  df-unif 15151  df-hom 15152  df-cco 15153  df-rest 15259  df-topn 15260  df-0g 15278  df-gsum 15279  df-topgen 15280  df-pt 15281  df-prds 15284  df-xrs 15338  df-qtop 15344  df-imas 15345  df-xps 15348  df-mre 15430  df-mrc 15431  df-acs 15433  df-mgm 16426  df-sgrp 16465  df-mnd 16475  df-submnd 16521  df-mulg 16614  df-cntz 16909  df-cmn 17370  df-psmet 18900  df-xmet 18901  df-met 18902  df-bl 18903  df-mopn 18904  df-fbas 18905  df-fg 18906  df-cnfld 18909  df-top 19858  df-bases 19859  df-topon 19860  df-topsp 19861  df-cld 19971  df-ntr 19972  df-cls 19973  df-nei 20051  df-lp 20089  df-perf 20090  df-cn 20180  df-cnp 20181  df-haus 20268  df-cmp 20339  df-tx 20514  df-hmeo 20707  df-fil 20798  df-fm 20890  df-flim 20891  df-flf 20892  df-xms 21272  df-ms 21273  df-tms 21274  df-cncf 21847  df-limc 22758  df-dv 22759  df-log 23443  df-cxp 23444  df-asin 23728
This theorem is referenced by:  dvacos  31936  dvreasin  31937
  Copyright terms: Public domain W3C validator