Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Structured version   Unicode version

Theorem dvaset 34542
Description: The constructed partial vector space A for a lattice  K. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h  |-  H  =  ( LHyp `  K
)
dvaset.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvaset.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvaset.d  |-  D  =  ( ( EDRing `  K
) `  W )
dvaset.u  |-  U  =  ( ( DVecA `  K
) `  W )
Assertion
Ref Expression
dvaset  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Distinct variable groups:    f, g,
s, K    f, W, g, s
Allowed substitution hints:    D( f, g, s)    T( f, g, s)    U( f, g, s)    E( f, g, s)    H( f, g, s)    X( f, g, s)

Proof of Theorem dvaset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2  |-  U  =  ( ( DVecA `  K
) `  W )
2 dvaset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32dvafset 34541 . . . 4  |-  ( K  e.  X  ->  ( DVecA `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) )
43fveq1d 5884 . . 3  |-  ( K  e.  X  ->  (
( DVecA `  K ) `  W )  =  ( ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W ) )
5 fveq2 5882 . . . . . . . 8  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
6 dvaset.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
75, 6syl6eqr 2481 . . . . . . 7  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
87opeq2d 4194 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  T >. )
9 eqidd 2423 . . . . . . . 8  |-  ( w  =  W  ->  (
f  o.  g )  =  ( f  o.  g ) )
107, 7, 9mpt2eq123dv 6368 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) )
1110opeq2d 4194 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  T , 
g  e.  T  |->  ( f  o.  g ) ) >. )
12 fveq2 5882 . . . . . . . 8  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  ( ( EDRing `  K ) `  W ) )
13 dvaset.d . . . . . . . 8  |-  D  =  ( ( EDRing `  K
) `  W )
1412, 13syl6eqr 2481 . . . . . . 7  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  D )
1514opeq2d 4194 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ( EDRing `  K ) `  w ) >.  =  <. (Scalar `  ndx ) ,  D >. )
168, 11, 15tpeq123d 4094 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. } )
17 fveq2 5882 . . . . . . . . 9  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
18 dvaset.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
1917, 18syl6eqr 2481 . . . . . . . 8  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
20 eqidd 2423 . . . . . . . 8  |-  ( w  =  W  ->  (
s `  f )  =  ( s `  f ) )
2119, 7, 20mpt2eq123dv 6368 . . . . . . 7  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) )  =  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) )
2221opeq2d 4194 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) ) >.  =  <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `
 f ) )
>. )
2322sneqd 4010 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. }  =  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } )
2416, 23uneq12d 3621 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
25 eqid 2422 . . . 4  |-  ( w  e.  H  |->  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )
26 tpex 6605 . . . . 5  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  e.  _V
27 snex 4662 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. }  e.  _V
2826, 27unex 6604 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } )  e.  _V
2924, 25, 28fvmpt 5965 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
304, 29sylan9eq 2483 . 2  |-  ( ( K  e.  X  /\  W  e.  H )  ->  ( ( DVecA `  K
) `  W )  =  ( { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } ) )
311, 30syl5eq 2475 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    u. cun 3434   {csn 3998   {ctp 4002   <.cop 4004    |-> cmpt 4482    o. ccom 4857   ` cfv 5601    |-> cmpt2 6308   ndxcnx 15118   Basecbs 15121   +g cplusg 15190  Scalarcsca 15193   .scvsca 15194   LHypclh 33519   LTrncltrn 33636   TEndoctendo 34289   EDRingcedring 34290   DVecAcdveca 34539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-oprab 6310  df-mpt2 6311  df-dveca 34540
This theorem is referenced by:  dvasca  34543  dvavbase  34550  dvafvadd  34551  dvafvsca  34553  dvaabl  34562
  Copyright terms: Public domain W3C validator