Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Unicode version

Theorem dvalveclem 37165
Description: Lemma for dvalvec 37166. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h  |-  H  =  ( LHyp `  K
)
dvalvec.v  |-  U  =  ( ( DVecA `  K
) `  W )
dvalveclem.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvalveclem.a  |-  .+  =  ( +g  `  U )
dvalveclem.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvalveclem.d  |-  D  =  (Scalar `  U )
dvalveclem.b  |-  B  =  ( Base `  K
)
dvalveclem.p  |-  .+^  =  ( +g  `  D )
dvalveclem.m  |-  .X.  =  ( .r `  D )
dvalveclem.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvalveclem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )

Proof of Theorem dvalveclem
Dummy variables  t 
f  a  b  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 dvalveclem.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvalvec.v . . . . 5  |-  U  =  ( ( DVecA `  K
) `  W )
4 eqid 2382 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
51, 2, 3, 4dvavbase 37152 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  T )
65eqcomd 2390 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  T  =  ( Base `  U ) )
7 dvalveclem.a . . . 4  |-  .+  =  ( +g  `  U )
87a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
9 dvalveclem.d . . . 4  |-  D  =  (Scalar `  U )
109a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  (Scalar `  U ) )
11 dvalveclem.s . . . 4  |-  .x.  =  ( .s `  U )
1211a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .x.  =  ( .s
`  U ) )
13 dvalveclem.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
14 eqid 2382 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
151, 13, 3, 9, 14dvabase 37146 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
1615eqcomd 2390 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
17 dvalveclem.p . . . 4  |-  .+^  =  ( +g  `  D )
1817a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  D ) )
19 dvalveclem.m . . . 4  |-  .X.  =  ( .r `  D )
2019a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .X.  =  ( .r
`  D ) )
211, 2, 13tendoidcl 36908 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
2221, 16eleqtrd 2472 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( Base `  D
) )
23 dvalveclem.b . . . . . . . 8  |-  B  =  ( Base `  K
)
24 eqid 2382 . . . . . . . 8  |-  ( f  e.  T  |->  (  _I  |`  B ) )  =  ( f  e.  T  |->  (  _I  |`  B ) )
2523, 1, 2, 13, 24tendo1ne0 36967 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( f  e.  T  |->  (  _I  |`  B ) ) )
26 eqid 2382 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
271, 26, 3, 9dvasca 37145 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
2827fveq2d 5778 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( 0g
`  ( ( EDRing `  K ) `  W
) ) )
29 eqid 2382 . . . . . . . . 9  |-  ( 0g
`  ( ( EDRing `  K ) `  W
) )  =  ( 0g `  ( (
EDRing `  K ) `  W ) )
3023, 1, 2, 26, 24, 29erng0g 37133 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  (
( EDRing `  K ) `  W ) )  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3128, 30eqtrd 2423 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3225, 31neeqtrrd 2682 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( 0g `  D ) )
3321, 21jca 530 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )
341, 2, 13, 3, 9, 19dvamulr 37151 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )  ->  ( (  _I  |`  T )  .X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
3533, 34mpdan 666 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
36 f1oi 5759 . . . . . . . 8  |-  (  _I  |`  T ) : T -1-1-onto-> T
37 f1of 5724 . . . . . . . 8  |-  ( (  _I  |`  T ) : T -1-1-onto-> T  ->  (  _I  |`  T ) : T --> T )
38 fcoi2 5668 . . . . . . . 8  |-  ( (  _I  |`  T ) : T --> T  ->  (
(  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
3936, 37, 38mp2b 10 . . . . . . 7  |-  ( (  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T )
4035, 39syl6eq 2439 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
4122, 32, 403jca 1174 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) ) )
421, 26erngdv 37132 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
4327, 42eqeltrd 2470 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
44 eqid 2382 . . . . . . 7  |-  ( 0g
`  D )  =  ( 0g `  D
)
45 eqid 2382 . . . . . . 7  |-  ( 1r
`  D )  =  ( 1r `  D
)
4614, 19, 44, 45drngid2 17525 . . . . . 6  |-  ( D  e.  DivRing  ->  ( ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4743, 46syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( (  _I  |`  T )  e.  (
Base `  D )  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  (
(  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4841, 47mpbid 210 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  (  _I  |`  T ) )
4948eqcomd 2390 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =  ( 1r `  D ) )
50 drngring 17516 . . . 4  |-  ( D  e.  DivRing  ->  D  e.  Ring )
5143, 50syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
521, 3dvaabl 37164 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Abel )
53 ablgrp 16920 . . . 4  |-  ( U  e.  Abel  ->  U  e. 
Grp )
5452, 53syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
551, 2, 13, 3, 11dvavsca 37156 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
56553impb 1190 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  =  ( s `  t ) )
571, 2, 13tendocl 36906 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s `  t )  e.  T
)
5856, 57eqeltrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  e.  T
)
591, 2, 13tendospdi1 37160 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  (
t  o.  f ) )  =  ( ( s `  t )  o.  ( s `  f ) ) )
60 simpr1 1000 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
s  e.  E )
611, 2ltrnco 36858 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  T  /\  f  e.  T
)  ->  ( t  o.  f )  e.  T
)
62613adant3r1 1203 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  o.  f
)  e.  T )
6360, 62jca 530 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t  o.  f
)  e.  T ) )
641, 2, 13, 3, 11dvavsca 37156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t  o.  f )  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
6563, 64syldan 468 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
66573adant3r3 1205 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  t
)  e.  T )
671, 2, 13tendocl 36906 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  f  e.  T
)  ->  ( s `  f )  e.  T
)
68673adant3r2 1204 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
6966, 68jca 530 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  e.  T  /\  ( s `  f
)  e.  T ) )
701, 2, 3, 7dvavadd 37154 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 t )  e.  T  /\  ( s `
 f )  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7169, 70syldan 468 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7259, 65, 713eqtr4d 2433 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
731, 2, 3, 7dvavadd 37154 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
74733adantr1 1153 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
7574oveq2d 6212 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( s 
.x.  ( t  o.  f ) ) )
76553adantr3 1155 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
771, 2, 13, 3, 11dvavsca 37156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
78773adantr2 1154 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
7976, 78oveq12d 6214 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s  .x.  t )  .+  (
s  .x.  f )
)  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
8072, 75, 793eqtr4d 2433 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( ( s  .x.  t ) 
.+  ( s  .x.  f ) ) )
811, 2, 13, 3, 9, 17dvaplusgv 37149 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t ) `  f
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
821, 2, 13, 3, 9, 17dvafplusg 37147 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
83823ad2ant1 1015 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  .+^  =  ( a  e.  E , 
b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f
)  o.  ( b `
 f ) ) ) ) )
8483oveqd 6213 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  =  ( s ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `
 f )  o.  ( b `  f
) ) ) ) t ) )
85 eqid 2382 . . . . . . . . 9  |-  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )
861, 2, 13, 85tendoplcl 36920 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) ) t )  e.  E )
8784, 86eqeltrd 2470 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  e.  E
)
88873adant3r3 1205 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .+^  t )  e.  E )
89 simpr3 1002 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
f  e.  T )
9088, 89jca 530 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  e.  E  /\  f  e.  T
) )
911, 2, 13, 3, 11dvavsca 37156 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
9290, 91syldan 468 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
93773adantr2 1154 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
941, 2, 13, 3, 11dvavsca 37156 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
95943adantr1 1153 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
9693, 95oveq12d 6214 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f ) 
.+  ( t `  f ) ) )
97673adant3r2 1204 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
981, 2, 13tendospcl 37158 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  f  e.  T
)  ->  ( t `  f )  e.  T
)
99983adant3r1 1203 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t `  f
)  e.  T )
10097, 99jca 530 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  e.  T  /\  ( t `  f
)  e.  T ) )
1011, 2, 3, 7dvavadd 37154 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 f )  e.  T  /\  ( t `
 f )  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
102100, 101syldan 468 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10396, 102eqtrd 2423 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10481, 92, 1033eqtr4d 2433 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .x.  f ) 
.+  ( t  .x.  f ) ) )
1051, 2, 13tendospass 37159 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t ) `  f
)  =  ( s `
 ( t `  f ) ) )
1061, 13tendococl 36911 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  o.  t )  e.  E
)
1071063adant3r3 1205 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  o.  t
)  e.  E )
108107, 89jca 530 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  e.  E  /\  f  e.  T
) )
1091, 2, 13, 3, 11dvavsca 37156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
110108, 109syldan 468 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
111 simpr1 1000 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
s  e.  E )
112111, 99jca 530 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t `  f
)  e.  T ) )
1131, 2, 13, 3, 11dvavsca 37156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t `
 f )  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
114112, 113syldan 468 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
115105, 110, 1143eqtr4d 2433 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( s 
.x.  ( t `  f ) ) )
1161, 2, 13, 3, 9, 19dvamulr 37151 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
1171163adantr3 1155 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
118117oveq1d 6211 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( ( s  o.  t ) 
.x.  f ) )
11995oveq2d 6212 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .x.  f )
)  =  ( s 
.x.  ( t `  f ) ) )
120115, 118, 1193eqtr4d 2433 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( s 
.x.  ( t  .x.  f ) ) )
12121anim1i 566 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  e.  E  /\  s  e.  T ) )
1221, 2, 13, 3, 11dvavsca 37156 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  T
) )  ->  (
(  _I  |`  T ) 
.x.  s )  =  ( (  _I  |`  T ) `
 s ) )
123121, 122syldan 468 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  ( (  _I  |`  T ) `
 s ) )
124 fvresi 5999 . . . . 5  |-  ( s  e.  T  ->  (
(  _I  |`  T ) `
 s )  =  s )
125124adantl 464 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T ) `  s )  =  s )
126123, 125eqtrd 2423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  s )
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 17631 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
1289islvec 17863 . 2  |-  ( U  e.  LVec  <->  ( U  e. 
LMod  /\  D  e.  DivRing ) )
129127, 43, 128sylanbrc 662 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577    |-> cmpt 4425    _I cid 4704    |` cres 4915    o. ccom 4917   -->wf 5492   -1-1-onto->wf1o 5495   ` cfv 5496  (class class class)co 6196    |-> cmpt2 6198   Basecbs 14634   +g cplusg 14702   .rcmulr 14703  Scalarcsca 14705   .scvsca 14706   0gc0g 14847   Grpcgrp 16170   Abelcabl 16916   1rcur 17266   Ringcrg 17311   DivRingcdr 17509   LModclmod 17625   LVecclvec 17861   HLchlt 35488   LHypclh 36121   LTrncltrn 36238   TEndoctendo 36891   EDRingcedring 36892   DVecAcdveca 37141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-riotaBAD 35097
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-tpos 6873  df-undef 6920  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-n0 10713  df-z 10782  df-uz 11002  df-fz 11594  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-sca 14718  df-vsca 14719  df-0g 14849  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-grp 16174  df-minusg 16175  df-cmn 16917  df-abl 16918  df-mgp 17255  df-ur 17267  df-ring 17313  df-oppr 17385  df-dvdsr 17403  df-unit 17404  df-invr 17434  df-dvr 17445  df-drng 17511  df-lmod 17627  df-lvec 17862  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-lplanes 35636  df-lvols 35637  df-lines 35638  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125  df-laut 36126  df-ldil 36241  df-ltrn 36242  df-trl 36297  df-tgrp 36882  df-tendo 36894  df-edring 36896  df-dveca 37142
This theorem is referenced by:  dvalvec  37166
  Copyright terms: Public domain W3C validator