Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Unicode version

Theorem dvalveclem 36486
Description: Lemma for dvalvec 36487. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h  |-  H  =  ( LHyp `  K
)
dvalvec.v  |-  U  =  ( ( DVecA `  K
) `  W )
dvalveclem.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvalveclem.a  |-  .+  =  ( +g  `  U )
dvalveclem.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvalveclem.d  |-  D  =  (Scalar `  U )
dvalveclem.b  |-  B  =  ( Base `  K
)
dvalveclem.p  |-  .+^  =  ( +g  `  D )
dvalveclem.m  |-  .X.  =  ( .r `  D )
dvalveclem.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvalveclem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )

Proof of Theorem dvalveclem
Dummy variables  t 
f  a  b  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 dvalveclem.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvalvec.v . . . . 5  |-  U  =  ( ( DVecA `  K
) `  W )
4 eqid 2443 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
51, 2, 3, 4dvavbase 36473 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  T )
65eqcomd 2451 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  T  =  ( Base `  U ) )
7 dvalveclem.a . . . 4  |-  .+  =  ( +g  `  U )
87a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
9 dvalveclem.d . . . 4  |-  D  =  (Scalar `  U )
109a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  (Scalar `  U ) )
11 dvalveclem.s . . . 4  |-  .x.  =  ( .s `  U )
1211a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .x.  =  ( .s
`  U ) )
13 dvalveclem.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
14 eqid 2443 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
151, 13, 3, 9, 14dvabase 36467 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
1615eqcomd 2451 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
17 dvalveclem.p . . . 4  |-  .+^  =  ( +g  `  D )
1817a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  D ) )
19 dvalveclem.m . . . 4  |-  .X.  =  ( .r `  D )
2019a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .X.  =  ( .r
`  D ) )
211, 2, 13tendoidcl 36229 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
2221, 16eleqtrd 2533 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( Base `  D
) )
23 dvalveclem.b . . . . . . . 8  |-  B  =  ( Base `  K
)
24 eqid 2443 . . . . . . . 8  |-  ( f  e.  T  |->  (  _I  |`  B ) )  =  ( f  e.  T  |->  (  _I  |`  B ) )
2523, 1, 2, 13, 24tendo1ne0 36288 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( f  e.  T  |->  (  _I  |`  B ) ) )
26 eqid 2443 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
271, 26, 3, 9dvasca 36466 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
2827fveq2d 5860 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( 0g
`  ( ( EDRing `  K ) `  W
) ) )
29 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  ( ( EDRing `  K ) `  W
) )  =  ( 0g `  ( (
EDRing `  K ) `  W ) )
3023, 1, 2, 26, 24, 29erng0g 36454 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  (
( EDRing `  K ) `  W ) )  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3128, 30eqtrd 2484 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3225, 31neeqtrrd 2743 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( 0g `  D ) )
3321, 21jca 532 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )
341, 2, 13, 3, 9, 19dvamulr 36472 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )  ->  ( (  _I  |`  T )  .X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
3533, 34mpdan 668 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
36 f1oi 5841 . . . . . . . 8  |-  (  _I  |`  T ) : T -1-1-onto-> T
37 f1of 5806 . . . . . . . 8  |-  ( (  _I  |`  T ) : T -1-1-onto-> T  ->  (  _I  |`  T ) : T --> T )
38 fcoi2 5750 . . . . . . . 8  |-  ( (  _I  |`  T ) : T --> T  ->  (
(  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
3936, 37, 38mp2b 10 . . . . . . 7  |-  ( (  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T )
4035, 39syl6eq 2500 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
4122, 32, 403jca 1177 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) ) )
421, 26erngdv 36453 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
4327, 42eqeltrd 2531 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
44 eqid 2443 . . . . . . 7  |-  ( 0g
`  D )  =  ( 0g `  D
)
45 eqid 2443 . . . . . . 7  |-  ( 1r
`  D )  =  ( 1r `  D
)
4614, 19, 44, 45drngid2 17286 . . . . . 6  |-  ( D  e.  DivRing  ->  ( ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4743, 46syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( (  _I  |`  T )  e.  (
Base `  D )  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  (
(  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4841, 47mpbid 210 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  (  _I  |`  T ) )
4948eqcomd 2451 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =  ( 1r `  D ) )
50 drngring 17277 . . . 4  |-  ( D  e.  DivRing  ->  D  e.  Ring )
5143, 50syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
521, 3dvaabl 36485 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Abel )
53 ablgrp 16677 . . . 4  |-  ( U  e.  Abel  ->  U  e. 
Grp )
5452, 53syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
551, 2, 13, 3, 11dvavsca 36477 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
56553impb 1193 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  =  ( s `  t ) )
571, 2, 13tendocl 36227 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s `  t )  e.  T
)
5856, 57eqeltrd 2531 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  e.  T
)
591, 2, 13tendospdi1 36481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  (
t  o.  f ) )  =  ( ( s `  t )  o.  ( s `  f ) ) )
60 simpr1 1003 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
s  e.  E )
611, 2ltrnco 36179 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  T  /\  f  e.  T
)  ->  ( t  o.  f )  e.  T
)
62613adant3r1 1206 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  o.  f
)  e.  T )
6360, 62jca 532 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t  o.  f
)  e.  T ) )
641, 2, 13, 3, 11dvavsca 36477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t  o.  f )  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
6563, 64syldan 470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
66573adant3r3 1208 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  t
)  e.  T )
671, 2, 13tendocl 36227 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  f  e.  T
)  ->  ( s `  f )  e.  T
)
68673adant3r2 1207 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
6966, 68jca 532 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  e.  T  /\  ( s `  f
)  e.  T ) )
701, 2, 3, 7dvavadd 36475 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 t )  e.  T  /\  ( s `
 f )  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7169, 70syldan 470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7259, 65, 713eqtr4d 2494 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
731, 2, 3, 7dvavadd 36475 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
74733adantr1 1156 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
7574oveq2d 6297 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( s 
.x.  ( t  o.  f ) ) )
76553adantr3 1158 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
771, 2, 13, 3, 11dvavsca 36477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
78773adantr2 1157 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
7976, 78oveq12d 6299 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s  .x.  t )  .+  (
s  .x.  f )
)  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
8072, 75, 793eqtr4d 2494 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( ( s  .x.  t ) 
.+  ( s  .x.  f ) ) )
811, 2, 13, 3, 9, 17dvaplusgv 36470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t ) `  f
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
821, 2, 13, 3, 9, 17dvafplusg 36468 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
83823ad2ant1 1018 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  .+^  =  ( a  e.  E , 
b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f
)  o.  ( b `
 f ) ) ) ) )
8483oveqd 6298 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  =  ( s ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `
 f )  o.  ( b `  f
) ) ) ) t ) )
85 eqid 2443 . . . . . . . . 9  |-  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )
861, 2, 13, 85tendoplcl 36241 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) ) t )  e.  E )
8784, 86eqeltrd 2531 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  e.  E
)
88873adant3r3 1208 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .+^  t )  e.  E )
89 simpr3 1005 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
f  e.  T )
9088, 89jca 532 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  e.  E  /\  f  e.  T
) )
911, 2, 13, 3, 11dvavsca 36477 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
9290, 91syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
93773adantr2 1157 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
941, 2, 13, 3, 11dvavsca 36477 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
95943adantr1 1156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
9693, 95oveq12d 6299 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f ) 
.+  ( t `  f ) ) )
97673adant3r2 1207 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
981, 2, 13tendospcl 36479 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  f  e.  T
)  ->  ( t `  f )  e.  T
)
99983adant3r1 1206 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t `  f
)  e.  T )
10097, 99jca 532 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  e.  T  /\  ( t `  f
)  e.  T ) )
1011, 2, 3, 7dvavadd 36475 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 f )  e.  T  /\  ( t `
 f )  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
102100, 101syldan 470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10396, 102eqtrd 2484 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10481, 92, 1033eqtr4d 2494 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .x.  f ) 
.+  ( t  .x.  f ) ) )
1051, 2, 13tendospass 36480 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t ) `  f
)  =  ( s `
 ( t `  f ) ) )
1061, 13tendococl 36232 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  o.  t )  e.  E
)
1071063adant3r3 1208 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  o.  t
)  e.  E )
108107, 89jca 532 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  e.  E  /\  f  e.  T
) )
1091, 2, 13, 3, 11dvavsca 36477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
110108, 109syldan 470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
111 simpr1 1003 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
s  e.  E )
112111, 99jca 532 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t `  f
)  e.  T ) )
1131, 2, 13, 3, 11dvavsca 36477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t `
 f )  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
114112, 113syldan 470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
115105, 110, 1143eqtr4d 2494 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( s 
.x.  ( t `  f ) ) )
1161, 2, 13, 3, 9, 19dvamulr 36472 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
1171163adantr3 1158 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
118117oveq1d 6296 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( ( s  o.  t ) 
.x.  f ) )
11995oveq2d 6297 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .x.  f )
)  =  ( s 
.x.  ( t `  f ) ) )
120115, 118, 1193eqtr4d 2494 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( s 
.x.  ( t  .x.  f ) ) )
12121anim1i 568 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  e.  E  /\  s  e.  T ) )
1221, 2, 13, 3, 11dvavsca 36477 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  T
) )  ->  (
(  _I  |`  T ) 
.x.  s )  =  ( (  _I  |`  T ) `
 s ) )
123121, 122syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  ( (  _I  |`  T ) `
 s ) )
124 fvresi 6082 . . . . 5  |-  ( s  e.  T  ->  (
(  _I  |`  T ) `
 s )  =  s )
125124adantl 466 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T ) `  s )  =  s )
126123, 125eqtrd 2484 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  s )
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 17392 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
1289islvec 17624 . 2  |-  ( U  e.  LVec  <->  ( U  e. 
LMod  /\  D  e.  DivRing ) )
129127, 43, 128sylanbrc 664 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638    |-> cmpt 4495    _I cid 4780    |` cres 4991    o. ccom 4993   -->wf 5574   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   Basecbs 14509   +g cplusg 14574   .rcmulr 14575  Scalarcsca 14577   .scvsca 14578   0gc0g 14714   Grpcgrp 15927   Abelcabl 16673   1rcur 17027   Ringcrg 17072   DivRingcdr 17270   LModclmod 17386   LVecclvec 17622   HLchlt 34809   LHypclh 35442   LTrncltrn 35559   TEndoctendo 36212   EDRingcedring 36213   DVecAcdveca 36462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-riotaBAD 34418
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-undef 7004  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-n0 10802  df-z 10871  df-uz 11091  df-fz 11682  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-sca 14590  df-vsca 14591  df-0g 14716  df-preset 15431  df-poset 15449  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-cmn 16674  df-abl 16675  df-mgp 17016  df-ur 17028  df-ring 17074  df-oppr 17146  df-dvdsr 17164  df-unit 17165  df-invr 17195  df-dvr 17206  df-drng 17272  df-lmod 17388  df-lvec 17623  df-oposet 34635  df-ol 34637  df-oml 34638  df-covers 34725  df-ats 34726  df-atl 34757  df-cvlat 34781  df-hlat 34810  df-llines 34956  df-lplanes 34957  df-lvols 34958  df-lines 34959  df-psubsp 34961  df-pmap 34962  df-padd 35254  df-lhyp 35446  df-laut 35447  df-ldil 35562  df-ltrn 35563  df-trl 35618  df-tgrp 36203  df-tendo 36215  df-edring 36217  df-dveca 36463
This theorem is referenced by:  dvalvec  36487
  Copyright terms: Public domain W3C validator