Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Unicode version

Theorem dvalveclem 31508
Description: Lemma for dvalvec 31509. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h  |-  H  =  ( LHyp `  K
)
dvalvec.v  |-  U  =  ( ( DVecA `  K
) `  W )
dvalveclem.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvalveclem.a  |-  .+  =  ( +g  `  U )
dvalveclem.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvalveclem.d  |-  D  =  (Scalar `  U )
dvalveclem.b  |-  B  =  ( Base `  K
)
dvalveclem.p  |-  .+^  =  ( +g  `  D )
dvalveclem.m  |-  .X.  =  ( .r `  D )
dvalveclem.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvalveclem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )

Proof of Theorem dvalveclem
Dummy variables  t 
f  a  b  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 dvalveclem.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvalvec.v . . . . 5  |-  U  =  ( ( DVecA `  K
) `  W )
4 eqid 2404 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
51, 2, 3, 4dvavbase 31495 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  T )
65eqcomd 2409 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  T  =  ( Base `  U ) )
7 dvalveclem.a . . . 4  |-  .+  =  ( +g  `  U )
87a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
9 dvalveclem.d . . . 4  |-  D  =  (Scalar `  U )
109a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  (Scalar `  U ) )
11 dvalveclem.s . . . 4  |-  .x.  =  ( .s `  U )
1211a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .x.  =  ( .s
`  U ) )
13 dvalveclem.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
14 eqid 2404 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
151, 13, 3, 9, 14dvabase 31489 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
1615eqcomd 2409 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
17 dvalveclem.p . . . 4  |-  .+^  =  ( +g  `  D )
1817a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  D ) )
19 dvalveclem.m . . . 4  |-  .X.  =  ( .r `  D )
2019a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .X.  =  ( .r
`  D ) )
211, 2, 13tendoidcl 31251 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
2221, 16eleqtrd 2480 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( Base `  D
) )
23 dvalveclem.b . . . . . . . 8  |-  B  =  ( Base `  K
)
24 eqid 2404 . . . . . . . 8  |-  ( f  e.  T  |->  (  _I  |`  B ) )  =  ( f  e.  T  |->  (  _I  |`  B ) )
2523, 1, 2, 13, 24tendo1ne0 31310 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( f  e.  T  |->  (  _I  |`  B ) ) )
26 eqid 2404 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
271, 26, 3, 9dvasca 31488 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
2827fveq2d 5691 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( 0g
`  ( ( EDRing `  K ) `  W
) ) )
29 eqid 2404 . . . . . . . . 9  |-  ( 0g
`  ( ( EDRing `  K ) `  W
) )  =  ( 0g `  ( (
EDRing `  K ) `  W ) )
3023, 1, 2, 26, 24, 29erng0g 31476 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  (
( EDRing `  K ) `  W ) )  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3128, 30eqtrd 2436 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  D
)  =  ( f  e.  T  |->  (  _I  |`  B ) ) )
3225, 31neeqtrrd 2591 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  ( 0g `  D ) )
3321, 21jca 519 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )
341, 2, 13, 3, 9, 19dvamulr 31494 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  (  _I  |`  T )  e.  E ) )  ->  ( (  _I  |`  T )  .X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
3533, 34mpdan 650 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  (  _I  |`  T ) ) )
36 f1oi 5672 . . . . . . . 8  |-  (  _I  |`  T ) : T -1-1-onto-> T
37 f1of 5633 . . . . . . . 8  |-  ( (  _I  |`  T ) : T -1-1-onto-> T  ->  (  _I  |`  T ) : T --> T )
38 fcoi2 5577 . . . . . . . 8  |-  ( (  _I  |`  T ) : T --> T  ->  (
(  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
3936, 37, 38mp2b 10 . . . . . . 7  |-  ( (  _I  |`  T )  o.  (  _I  |`  T ) )  =  (  _I  |`  T )
4035, 39syl6eq 2452 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )
4122, 32, 403jca 1134 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) ) )
421, 26erngdv 31475 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
4327, 42eqeltrd 2478 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
44 eqid 2404 . . . . . . 7  |-  ( 0g
`  D )  =  ( 0g `  D
)
45 eqid 2404 . . . . . . 7  |-  ( 1r
`  D )  =  ( 1r `  D
)
4614, 19, 44, 45drngid2 15806 . . . . . 6  |-  ( D  e.  DivRing  ->  ( ( (  _I  |`  T )  e.  ( Base `  D
)  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  ( (  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4743, 46syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( (  _I  |`  T )  e.  (
Base `  D )  /\  (  _I  |`  T )  =/=  ( 0g `  D )  /\  (
(  _I  |`  T ) 
.X.  (  _I  |`  T ) )  =  (  _I  |`  T ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
4841, 47mpbid 202 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  (  _I  |`  T ) )
4948eqcomd 2409 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =  ( 1r `  D ) )
50 drngrng 15797 . . . 4  |-  ( D  e.  DivRing  ->  D  e.  Ring )
5143, 50syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
521, 3dvaabl 31507 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Abel )
53 ablgrp 15372 . . . 4  |-  ( U  e.  Abel  ->  U  e. 
Grp )
5452, 53syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
551, 2, 13, 3, 11dvavsca 31499 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
56553impb 1149 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  =  ( s `  t ) )
571, 2, 13tendocl 31249 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s `  t )  e.  T
)
5856, 57eqeltrd 2478 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  T
)  ->  ( s  .x.  t )  e.  T
)
591, 2, 13tendospdi1 31503 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  (
t  o.  f ) )  =  ( ( s `  t )  o.  ( s `  f ) ) )
60 simpr1 963 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
s  e.  E )
611, 2ltrnco 31201 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  T  /\  f  e.  T
)  ->  ( t  o.  f )  e.  T
)
62613adant3r1 1162 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  o.  f
)  e.  T )
6360, 62jca 519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t  o.  f
)  e.  T ) )
641, 2, 13, 3, 11dvavsca 31499 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t  o.  f )  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
6563, 64syldan 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( s `
 ( t  o.  f ) ) )
66573adant3r3 1164 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  t
)  e.  T )
671, 2, 13tendocl 31249 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  f  e.  T
)  ->  ( s `  f )  e.  T
)
68673adant3r2 1163 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
6966, 68jca 519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  e.  T  /\  ( s `  f
)  e.  T ) )
701, 2, 3, 7dvavadd 31497 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 t )  e.  T  /\  ( s `
 f )  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7169, 70syldan 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s `  t )  .+  (
s `  f )
)  =  ( ( s `  t )  o.  ( s `  f ) ) )
7259, 65, 713eqtr4d 2446 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  o.  f ) )  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
731, 2, 3, 7dvavadd 31497 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
74733adantr1 1116 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( t  .+  f
)  =  ( t  o.  f ) )
7574oveq2d 6056 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( s 
.x.  ( t  o.  f ) ) )
76553adantr3 1118 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  t
)  =  ( s `
 t ) )
771, 2, 13, 3, 11dvavsca 31499 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
78773adantr2 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
7976, 78oveq12d 6058 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( ( s  .x.  t )  .+  (
s  .x.  f )
)  =  ( ( s `  t ) 
.+  ( s `  f ) ) )
8072, 75, 793eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  T  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( ( s  .x.  t ) 
.+  ( s  .x.  f ) ) )
811, 2, 13, 3, 9, 17dvaplusgv 31492 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t ) `  f
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
821, 2, 13, 3, 9, 17dvafplusg 31490 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
83823ad2ant1 978 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  .+^  =  ( a  e.  E , 
b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f
)  o.  ( b `
 f ) ) ) ) )
8483oveqd 6057 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  =  ( s ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `
 f )  o.  ( b `  f
) ) ) ) t ) )
85 eqid 2404 . . . . . . . . 9  |-  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )
861, 2, 13, 85tendoplcl 31263 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) ) t )  e.  E )
8784, 86eqeltrd 2478 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  .+^  t )  e.  E
)
88873adant3r3 1164 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .+^  t )  e.  E )
89 simpr3 965 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
f  e.  T )
9088, 89jca 519 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  e.  E  /\  f  e.  T
) )
911, 2, 13, 3, 11dvavsca 31499 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
9290, 91syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .+^  t ) `  f ) )
93773adantr2 1117 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  f
)  =  ( s `
 f ) )
941, 2, 13, 3, 11dvavsca 31499 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
95943adantr1 1116 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t  .x.  f
)  =  ( t `
 f ) )
9693, 95oveq12d 6058 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f ) 
.+  ( t `  f ) ) )
97673adant3r2 1163 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s `  f
)  e.  T )
981, 2, 13tendospcl 31501 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  f  e.  T
)  ->  ( t `  f )  e.  T
)
99983adant3r1 1162 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( t `  f
)  e.  T )
10097, 99jca 519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  e.  T  /\  ( t `  f
)  e.  T ) )
1011, 2, 3, 7dvavadd 31497 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 f )  e.  T  /\  ( t `
 f )  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
102100, 101syldan 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s `  f )  .+  (
t `  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10396, 102eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  ( ( s `  f )  o.  ( t `  f ) ) )
10481, 92, 1033eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .x.  f ) 
.+  ( t  .x.  f ) ) )
1051, 2, 13tendospass 31502 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t ) `  f
)  =  ( s `
 ( t `  f ) ) )
1061, 13tendococl 31254 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  o.  t )  e.  E
)
1071063adant3r3 1164 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  o.  t
)  e.  E )
108107, 89jca 519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  e.  E  /\  f  e.  T
) )
1091, 2, 13, 3, 11dvavsca 31499 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  t )  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
110108, 109syldan 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( ( s  o.  t ) `
 f ) )
111 simpr1 963 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
s  e.  E )
112111, 99jca 519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  e.  E  /\  ( t `  f
)  e.  T ) )
1131, 2, 13, 3, 11dvavsca 31499 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t `
 f )  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
114112, 113syldan 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t `  f )
)  =  ( s `
 ( t `  f ) ) )
115105, 110, 1143eqtr4d 2446 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( s 
.x.  ( t `  f ) ) )
1161, 2, 13, 3, 9, 19dvamulr 31494 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
1171163adantr3 1118 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
118117oveq1d 6055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( ( s  o.  t ) 
.x.  f ) )
11995oveq2d 6056 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( s  .x.  (
t  .x.  f )
)  =  ( s 
.x.  ( t `  f ) ) )
120115, 118, 1193eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  T ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( s 
.x.  ( t  .x.  f ) ) )
12121anim1i 552 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  e.  E  /\  s  e.  T ) )
1221, 2, 13, 3, 11dvavsca 31499 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  T
) )  ->  (
(  _I  |`  T ) 
.x.  s )  =  ( (  _I  |`  T ) `
 s ) )
123121, 122syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  ( (  _I  |`  T ) `
 s ) )
124 fvresi 5883 . . . . 5  |-  ( s  e.  T  ->  (
(  _I  |`  T ) `
 s )  =  s )
125124adantl 453 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T ) `  s )  =  s )
126123, 125eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  T
)  ->  ( (  _I  |`  T )  .x.  s )  =  s )
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 15911 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
1289islvec 16131 . 2  |-  ( U  e.  LVec  <->  ( U  e. 
LMod  /\  D  e.  DivRing ) )
129127, 43, 128sylanbrc 646 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    e. cmpt 4226    _I cid 4453    |` cres 4839    o. ccom 4841   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   0gc0g 13678   Grpcgrp 14640   Abelcabel 15368   Ringcrg 15615   1rcur 15617   DivRingcdr 15790   LModclmod 15905   LVecclvec 16129   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   EDRingcedring 31235   DVecAcdveca 31484
This theorem is referenced by:  dvalvec  31509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-grp 14767  df-minusg 14768  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lvec 16130  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tgrp 31225  df-tendo 31237  df-edring 31239  df-dveca 31485
  Copyright terms: Public domain W3C validator