Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Structured version   Unicode version

Theorem dva1dim 34641
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 
F whose trace is  P rather than  P itself;  F exists by cdlemf 34219. 
E is the division ring base by erngdv 34649, and  s `  F is the scalar product by dvavsca 34673. 
F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l  |-  .<_  =  ( le `  K )
dva1dim.h  |-  H  =  ( LHyp `  K
)
dva1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dva1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dva1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
dva1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Distinct variable groups:    .<_ , s    E, s    g, s, F    g, H, s    g, K, s    R, s    T, g, s   
g, W, s
Allowed substitution hints:    R( g)    E( g)   
.<_ ( g)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
2 dva1dim.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
3 dva1dim.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendocl 34423 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
5 dva1dim.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
6 dva1dim.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
75, 1, 2, 6, 3tendotp 34417 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) )
84, 7jca 532 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) )
983expb 1188 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  F  e.  T ) )  -> 
( ( s `  F )  e.  T  /\  ( R `  (
s `  F )
)  .<_  ( R `  F ) ) )
109anass1rs 805 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  ( R `  ( s `
 F ) ) 
.<_  ( R `  F
) ) )
11 eleq1 2503 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
g  e.  T  <->  ( s `  F )  e.  T
) )
12 fveq2 5703 . . . . . . . 8  |-  ( g  =  ( s `  F )  ->  ( R `  g )  =  ( R `  ( s `  F
) ) )
1312breq1d 4314 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
( R `  g
)  .<_  ( R `  F )  <->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) ) )
1411, 13anbi12d 710 . . . . . 6  |-  ( g  =  ( s `  F )  ->  (
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) )  <->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) ) )
1510, 14syl5ibrcom 222 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
g  =  ( s `
 F )  -> 
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) ) ) )
1615rexlimdva 2853 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  ->  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) ) )
17 simpll 753 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
18 simplr 754 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  F  e.  T )
19 simprl 755 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
g  e.  T )
20 simprr 756 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( R `  g
)  .<_  ( R `  F ) )
215, 1, 2, 6, 3tendoex 34631 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  g  e.  T )  /\  ( R `  g )  .<_  ( R `  F
) )  ->  E. s  e.  E  ( s `  F )  =  g )
2217, 18, 19, 20, 21syl121anc 1223 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  ( s `  F
)  =  g )
23 eqcom 2445 . . . . . . 7  |-  ( ( s `  F )  =  g  <->  g  =  ( s `  F
) )
2423rexbii 2752 . . . . . 6  |-  ( E. s  e.  E  ( s `  F )  =  g  <->  E. s  e.  E  g  =  ( s `  F
) )
2522, 24sylib 196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  g  =  ( s `  F ) )
2625ex 434 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) )  ->  E. s  e.  E  g  =  ( s `  F
) ) )
2716, 26impbid 191 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  <->  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) ) )
2827abbidv 2563 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  |  ( g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) } )
29 df-rab 2736 . 2  |-  { g  e.  T  |  ( R `  g ) 
.<_  ( R `  F
) }  =  {
g  |  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) }
3028, 29syl6eqr 2493 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2728   {crab 2731   class class class wbr 4304   ` cfv 5430   lecple 14257   HLchlt 33007   LHypclh 33640   LTrncltrn 33757   trLctrl 33814   TEndoctendo 34408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-riotaBAD 32616
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-1st 6589  df-2nd 6590  df-undef 6804  df-map 7228  df-poset 15128  df-plt 15140  df-lub 15156  df-glb 15157  df-join 15158  df-meet 15159  df-p0 15221  df-p1 15222  df-lat 15228  df-clat 15290  df-oposet 32833  df-ol 32835  df-oml 32836  df-covers 32923  df-ats 32924  df-atl 32955  df-cvlat 32979  df-hlat 33008  df-llines 33154  df-lplanes 33155  df-lvols 33156  df-lines 33157  df-psubsp 33159  df-pmap 33160  df-padd 33452  df-lhyp 33644  df-laut 33645  df-ldil 33760  df-ltrn 33761  df-trl 33815  df-tendo 34411
This theorem is referenced by:  dvhb1dimN  34642  dia1dim  34718
  Copyright terms: Public domain W3C validator