MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Unicode version

Theorem dv11cn 22487
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 
C in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x  |-  X  =  ( A ( ball `  ( abs  o.  -  ) ) R )
dv11cn.a  |-  ( ph  ->  A  e.  CC )
dv11cn.r  |-  ( ph  ->  R  e.  RR* )
dv11cn.f  |-  ( ph  ->  F : X --> CC )
dv11cn.g  |-  ( ph  ->  G : X --> CC )
dv11cn.d  |-  ( ph  ->  dom  ( CC  _D  F )  =  X )
dv11cn.e  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  G ) )
dv11cn.c  |-  ( ph  ->  C  e.  X )
dv11cn.p  |-  ( ph  ->  ( F `  C
)  =  ( G `
 C ) )
Assertion
Ref Expression
dv11cn  |-  ( ph  ->  F  =  G )

Proof of Theorem dv11cn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5  |-  ( ph  ->  F : X --> CC )
2 ffn 5639 . . . . 5  |-  ( F : X --> CC  ->  F  Fn  X )
31, 2syl 16 . . . 4  |-  ( ph  ->  F  Fn  X )
4 dv11cn.g . . . . 5  |-  ( ph  ->  G : X --> CC )
5 ffn 5639 . . . . 5  |-  ( G : X --> CC  ->  G  Fn  X )
64, 5syl 16 . . . 4  |-  ( ph  ->  G  Fn  X )
7 dv11cn.x . . . . . 6  |-  X  =  ( A ( ball `  ( abs  o.  -  ) ) R )
8 ovex 6224 . . . . . 6  |-  ( A ( ball `  ( abs  o.  -  ) ) R )  e.  _V
97, 8eqeltri 2466 . . . . 5  |-  X  e. 
_V
109a1i 11 . . . 4  |-  ( ph  ->  X  e.  _V )
11 inidm 3621 . . . 4  |-  ( X  i^i  X )  =  X
123, 6, 10, 10, 11offn 6450 . . 3  |-  ( ph  ->  ( F  oF  -  G )  Fn  X )
13 0cn 9499 . . . 4  |-  0  e.  CC
14 fnconstg 5681 . . . 4  |-  ( 0  e.  CC  ->  ( X  X.  { 0 } )  Fn  X )
1513, 14mp1i 12 . . 3  |-  ( ph  ->  ( X  X.  {
0 } )  Fn  X )
16 subcl 9732 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
1716adantl 464 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  -  y
)  e.  CC )
1817, 1, 4, 10, 10, 11off 6453 . . . . . 6  |-  ( ph  ->  ( F  oF  -  G ) : X --> CC )
1918ffvelrnda 5933 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( F  oF  -  G ) `  x )  e.  CC )
20 simpr 459 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
21 dv11cn.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  X )
2221adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  X )
2320, 22jca 530 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  X  /\  C  e.  X )
)
24 cnxmet 21365 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2524a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
26 dv11cn.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
27 dv11cn.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  RR* )
28 blssm 21006 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  R  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) R )  C_  CC )
2925, 26, 27, 28syl3anc 1226 . . . . . . . . . 10  |-  ( ph  ->  ( A ( ball `  ( abs  o.  -  ) ) R ) 
C_  CC )
307, 29syl5eqss 3461 . . . . . . . . 9  |-  ( ph  ->  X  C_  CC )
311ffvelrnda 5933 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
324ffvelrnda 5933 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
331feqmptd 5827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
344feqmptd 5827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
3510, 31, 32, 33, 34offval2 6455 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  oF  -  G )  =  ( x  e.  X  |->  ( ( F `  x )  -  ( G `  x )
) ) )
3635oveq2d 6212 . . . . . . . . . . . . 13  |-  ( ph  ->  ( CC  _D  ( F  oF  -  G
) )  =  ( CC  _D  ( x  e.  X  |->  ( ( F `  x )  -  ( G `  x ) ) ) ) )
37 cnelprrecn 9496 . . . . . . . . . . . . . . 15  |-  CC  e.  { RR ,  CC }
3837a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  CC  e.  { RR ,  CC } )
39 fvex 5784 . . . . . . . . . . . . . . 15  |-  ( ( CC  _D  F ) `
 x )  e. 
_V
4039a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
( CC  _D  F
) `  x )  e.  _V )
4133oveq2d 6212 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  ( x  e.  X  |->  ( F `  x ) ) ) )
42 dvfcn 22397 . . . . . . . . . . . . . . . . 17  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
43 dv11cn.d . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  ( CC  _D  F )  =  X )
4443feq2d 5626 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : X --> CC ) )
4542, 44mpbii 211 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( CC  _D  F
) : X --> CC )
4645feqmptd 5827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  _D  F
)  =  ( x  e.  X  |->  ( ( CC  _D  F ) `
 x ) ) )
4741, 46eqtr3d 2425 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( CC  _D  (
x  e.  X  |->  ( F `  x ) ) )  =  ( x  e.  X  |->  ( ( CC  _D  F
) `  x )
) )
48 dv11cn.e . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  G ) )
4934oveq2d 6212 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  _D  G
)  =  ( CC 
_D  ( x  e.  X  |->  ( G `  x ) ) ) )
5048, 46, 493eqtr3rd 2432 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( CC  _D  (
x  e.  X  |->  ( G `  x ) ) )  =  ( x  e.  X  |->  ( ( CC  _D  F
) `  x )
) )
5138, 31, 40, 47, 32, 40, 50dvmptsub 22455 . . . . . . . . . . . . 13  |-  ( ph  ->  ( CC  _D  (
x  e.  X  |->  ( ( F `  x
)  -  ( G `
 x ) ) ) )  =  ( x  e.  X  |->  ( ( ( CC  _D  F ) `  x
)  -  ( ( CC  _D  F ) `
 x ) ) ) )
5245ffvelrnda 5933 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  X )  ->  (
( CC  _D  F
) `  x )  e.  CC )
5352subidd 9832 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( CC  _D  F ) `  x
)  -  ( ( CC  _D  F ) `
 x ) )  =  0 )
5453mpteq2dva 4453 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( CC 
_D  F ) `  x )  -  (
( CC  _D  F
) `  x )
) )  =  ( x  e.  X  |->  0 ) )
55 fconstmpt 4957 . . . . . . . . . . . . . 14  |-  ( X  X.  { 0 } )  =  ( x  e.  X  |->  0 )
5654, 55syl6eqr 2441 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( CC 
_D  F ) `  x )  -  (
( CC  _D  F
) `  x )
) )  =  ( X  X.  { 0 } ) )
5736, 51, 563eqtrd 2427 . . . . . . . . . . . 12  |-  ( ph  ->  ( CC  _D  ( F  oF  -  G
) )  =  ( X  X.  { 0 } ) )
5857dmeqd 5118 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( CC  _D  ( F  oF  -  G ) )  =  dom  ( X  X.  { 0 } ) )
59 snnzg 4061 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  { 0 }  =/=  (/) )
60 dmxp 5134 . . . . . . . . . . . 12  |-  ( { 0 }  =/=  (/)  ->  dom  ( X  X.  { 0 } )  =  X )
6113, 59, 60mp2b 10 . . . . . . . . . . 11  |-  dom  ( X  X.  { 0 } )  =  X
6258, 61syl6eq 2439 . . . . . . . . . 10  |-  ( ph  ->  dom  ( CC  _D  ( F  oF  -  G ) )  =  X )
63 eqimss2 3470 . . . . . . . . . 10  |-  ( dom  ( CC  _D  ( F  oF  -  G
) )  =  X  ->  X  C_  dom  ( CC  _D  ( F  oF  -  G
) ) )
6462, 63syl 16 . . . . . . . . 9  |-  ( ph  ->  X  C_  dom  ( CC 
_D  ( F  oF  -  G )
) )
65 0red 9508 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
6657fveq1d 5776 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( CC  _D  ( F  oF  -  G ) ) `  x )  =  ( ( X  X.  {
0 } ) `  x ) )
67 c0ex 9501 . . . . . . . . . . . . 13  |-  0  e.  _V
6867fvconst2 6029 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  (
( X  X.  {
0 } ) `  x )  =  0 )
6966, 68sylan9eq 2443 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
( CC  _D  ( F  oF  -  G
) ) `  x
)  =  0 )
7069abs00bd 13126 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( CC 
_D  ( F  oF  -  G )
) `  x )
)  =  0 )
71 0le0 10542 . . . . . . . . . 10  |-  0  <_  0
7270, 71syl6eqbr 4404 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( CC 
_D  ( F  oF  -  G )
) `  x )
)  <_  0 )
7330, 18, 26, 27, 7, 64, 65, 72dvlipcn 22480 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  C  e.  X ) )  -> 
( abs `  (
( ( F  oF  -  G ) `  x )  -  (
( F  oF  -  G ) `  C ) ) )  <_  ( 0  x.  ( abs `  (
x  -  C ) ) ) )
7423, 73syldan 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( ( F  oF  -  G ) `  x
)  -  ( ( F  oF  -  G ) `  C
) ) )  <_ 
( 0  x.  ( abs `  ( x  -  C ) ) ) )
7535fveq1d 5776 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F  oF  -  G ) `  C )  =  ( ( x  e.  X  |->  ( ( F `  x )  -  ( G `  x )
) ) `  C
) )
76 fveq2 5774 . . . . . . . . . . . . . . 15  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
77 fveq2 5774 . . . . . . . . . . . . . . 15  |-  ( x  =  C  ->  ( G `  x )  =  ( G `  C ) )
7876, 77oveq12d 6214 . . . . . . . . . . . . . 14  |-  ( x  =  C  ->  (
( F `  x
)  -  ( G `
 x ) )  =  ( ( F `
 C )  -  ( G `  C ) ) )
79 eqid 2382 . . . . . . . . . . . . . 14  |-  ( x  e.  X  |->  ( ( F `  x )  -  ( G `  x ) ) )  =  ( x  e.  X  |->  ( ( F `
 x )  -  ( G `  x ) ) )
80 ovex 6224 . . . . . . . . . . . . . 14  |-  ( ( F `  C )  -  ( G `  C ) )  e. 
_V
8178, 79, 80fvmpt 5857 . . . . . . . . . . . . 13  |-  ( C  e.  X  ->  (
( x  e.  X  |->  ( ( F `  x )  -  ( G `  x )
) ) `  C
)  =  ( ( F `  C )  -  ( G `  C ) ) )
8221, 81syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  X  |->  ( ( F `
 x )  -  ( G `  x ) ) ) `  C
)  =  ( ( F `  C )  -  ( G `  C ) ) )
831, 21ffvelrnd 5934 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  C
)  e.  CC )
84 dv11cn.p . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  C
)  =  ( G `
 C ) )
8583, 84subeq0bd 9903 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  C )  -  ( G `  C )
)  =  0 )
8675, 82, 853eqtrd 2427 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  oF  -  G ) `  C )  =  0 )
8786adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( F  oF  -  G ) `  C )  =  0 )
8887oveq2d 6212 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( F  oF  -  G ) `  x )  -  (
( F  oF  -  G ) `  C ) )  =  ( ( ( F  oF  -  G
) `  x )  -  0 ) )
8919subid1d 9833 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( F  oF  -  G ) `  x )  -  0 )  =  ( ( F  oF  -  G ) `  x
) )
9088, 89eqtrd 2423 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( F  oF  -  G ) `  x )  -  (
( F  oF  -  G ) `  C ) )  =  ( ( F  oF  -  G ) `  x ) )
9190fveq2d 5778 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( ( F  oF  -  G ) `  x
)  -  ( ( F  oF  -  G ) `  C
) ) )  =  ( abs `  (
( F  oF  -  G ) `  x ) ) )
9230sselda 3417 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  CC )
9330, 21sseldd 3418 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
9493adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
9592, 94subcld 9844 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
x  -  C )  e.  CC )
9695abscld 13269 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( x  -  C ) )  e.  RR )
9796recnd 9533 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( x  -  C ) )  e.  CC )
9897mul02d 9689 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
0  x.  ( abs `  ( x  -  C
) ) )  =  0 )
9974, 91, 983brtr3d 4396 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( F  oF  -  G
) `  x )
)  <_  0 )
10019absge0d 13277 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( abs `  (
( F  oF  -  G ) `  x ) ) )
10119abscld 13269 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( F  oF  -  G
) `  x )
)  e.  RR )
102 0re 9507 . . . . . . 7  |-  0  e.  RR
103 letri3 9581 . . . . . . 7  |-  ( ( ( abs `  (
( F  oF  -  G ) `  x ) )  e.  RR  /\  0  e.  RR )  ->  (
( abs `  (
( F  oF  -  G ) `  x ) )  =  0  <->  ( ( abs `  ( ( F  oF  -  G ) `  x ) )  <_ 
0  /\  0  <_  ( abs `  ( ( F  oF  -  G ) `  x
) ) ) ) )
104101, 102, 103sylancl 660 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( abs `  (
( F  oF  -  G ) `  x ) )  =  0  <->  ( ( abs `  ( ( F  oF  -  G ) `  x ) )  <_ 
0  /\  0  <_  ( abs `  ( ( F  oF  -  G ) `  x
) ) ) ) )
10599, 100, 104mpbir2and 920 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( ( F  oF  -  G
) `  x )
)  =  0 )
10619, 105abs00d 13279 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( F  oF  -  G ) `  x )  =  0 )
10768adantl 464 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( X  X.  {
0 } ) `  x )  =  0 )
108106, 107eqtr4d 2426 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( F  oF  -  G ) `  x )  =  ( ( X  X.  {
0 } ) `  x ) )
10912, 15, 108eqfnfvd 5886 . 2  |-  ( ph  ->  ( F  oF  -  G )  =  ( X  X.  {
0 } ) )
110 ofsubeq0 10449 . . 3  |-  ( ( X  e.  _V  /\  F : X --> CC  /\  G : X --> CC )  ->  ( ( F  oF  -  G
)  =  ( X  X.  { 0 } )  <->  F  =  G
) )
11110, 1, 4, 110syl3anc 1226 . 2  |-  ( ph  ->  ( ( F  oF  -  G )  =  ( X  X.  { 0 } )  <-> 
F  =  G ) )
112109, 111mpbid 210 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   _Vcvv 3034    C_ wss 3389   (/)c0 3711   {csn 3944   {cpr 3946   class class class wbr 4367    |-> cmpt 4425    X. cxp 4911   dom cdm 4913    o. ccom 4917    Fn wfn 5491   -->wf 5492   ` cfv 5496  (class class class)co 6196    oFcof 6437   CCcc 9401   RRcr 9402   0cc0 9403    x. cmul 9408   RR*cxr 9538    <_ cle 9540    - cmin 9718   abscabs 13069   *Metcxmt 18516   ballcbl 18518    _D cdv 22352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-lp 19723  df-perf 19724  df-cn 19814  df-cnp 19815  df-haus 19902  df-cmp 19973  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cncf 21467  df-limc 22355  df-dv 22356
This theorem is referenced by:  logtayl  23128  binomcxplemnotnn0  31429
  Copyright terms: Public domain W3C validator