Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvclim1 Structured version   Unicode version

Theorem dstfrvclim1 28908
Description: The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
dstfrv.1  |-  ( ph  ->  P  e. Prob )
dstfrv.2  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
dstfrv.3  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( P `
 ( XRV/𝑐  <_  x ) ) ) )
Assertion
Ref Expression
dstfrvclim1  |-  ( ph  ->  F  ~~>  1 )
Distinct variable groups:    x, P    x, X    ph, x
Allowed substitution hint:    F( x)

Proof of Theorem dstfrvclim1
Dummy variables  i 
a  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2402 . . . . 5  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
2 dstfrv.1 . . . . . 6  |-  ( ph  ->  P  e. Prob )
3 domprobmeas 28841 . . . . . 6  |-  ( P  e. Prob  ->  P  e.  (measures `  dom  P ) )
42, 3syl 17 . . . . 5  |-  ( ph  ->  P  e.  (measures `  dom  P ) )
52adantr 463 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  P  e. Prob
)
6 dstfrv.2 . . . . . . . 8  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
76adantr 463 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  X  e.  (rRndVar `  P )
)
8 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
98nnred 10590 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  RR )
105, 7, 9orvclteel 28903 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( XRV/𝑐  <_  i )  e.  dom  P
)
11 eqid 2402 . . . . . 6  |-  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  =  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )
1210, 11fmptd 6032 . . . . 5  |-  ( ph  ->  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) : NN --> dom  P )
132adantr 463 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  P  e. Prob
)
146adantr 463 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  X  e.  (rRndVar `  P )
)
15 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
1615nnred 10590 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  RR )
1715peano2nnd 10592 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
1817nnred 10590 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( n  +  1 )  e.  RR )
1916lep1d 10516 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  n  <_ 
( n  +  1 ) )
2013, 14, 16, 18, 19orvclteinc 28906 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( XRV/𝑐  <_  n )  C_  ( XRV/𝑐  <_  (
n  +  1 ) ) )
21 eqidd 2403 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  =  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )
22 simpr 459 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  i  =  n )  ->  i  =  n )
2322oveq2d 6293 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  i  =  n )  ->  ( XRV/𝑐  <_ 
i )  =  ( XRV/𝑐  <_  n ) )
2413, 14, 16orvclteel 28903 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( XRV/𝑐  <_  n )  e.  dom  P
)
2521, 23, 15, 24fvmptd 5937 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) `  n )  =  ( XRV/𝑐  <_  n ) )
26 simpr 459 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  i  =  ( n  + 
1 ) )  -> 
i  =  ( n  +  1 ) )
2726oveq2d 6293 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  i  =  ( n  + 
1 ) )  -> 
( XRV/𝑐  <_  i )  =  ( XRV/𝑐  <_  ( n  +  1 ) ) )
2813, 14, 18orvclteel 28903 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( XRV/𝑐  <_  ( n  +  1 ) )  e.  dom  P
)
2921, 27, 17, 28fvmptd 5937 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) `  ( n  +  1
) )  =  ( XRV/𝑐  <_  ( n  +  1 ) ) )
3020, 25, 293sstr4d 3484 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) `  n )  C_  (
( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) `  ( n  +  1
) ) )
311, 4, 12, 30meascnbl 28653 . . . 4  |-  ( ph  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) ( ~~> t `  ( TopOpen
`  ( RR*ss  (
0 [,] +oo )
) ) ) ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) )
32 measfn 28638 . . . . . . . 8  |-  ( P  e.  (measures `  dom  P )  ->  P  Fn  dom  P )
33 dffn5 5893 . . . . . . . . 9  |-  ( P  Fn  dom  P  <->  P  =  ( a  e.  dom  P 
|->  ( P `  a
) ) )
3433biimpi 194 . . . . . . . 8  |-  ( P  Fn  dom  P  ->  P  =  ( a  e.  dom  P  |->  ( P `
 a ) ) )
354, 32, 343syl 20 . . . . . . 7  |-  ( ph  ->  P  =  ( a  e.  dom  P  |->  ( P `  a ) ) )
36 prob01 28844 . . . . . . . 8  |-  ( ( P  e. Prob  /\  a  e.  dom  P )  -> 
( P `  a
)  e.  ( 0 [,] 1 ) )
372, 36sylan 469 . . . . . . 7  |-  ( (
ph  /\  a  e.  dom  P )  ->  ( P `  a )  e.  ( 0 [,] 1
) )
3835, 37fmpt3d 6033 . . . . . 6  |-  ( ph  ->  P : dom  P --> ( 0 [,] 1
) )
39 fco 5723 . . . . . 6  |-  ( ( P : dom  P --> ( 0 [,] 1
)  /\  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) : NN --> dom  P )  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) : NN --> ( 0 [,] 1 ) )
4038, 12, 39syl2anc 659 . . . . 5  |-  ( ph  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) : NN --> ( 0 [,] 1 ) )
412, 6dstfrvunirn 28905 . . . . . . 7  |-  ( ph  ->  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  =  U. dom  P )
422unveldomd 28846 . . . . . . 7  |-  ( ph  ->  U. dom  P  e. 
dom  P )
4341, 42eqeltrd 2490 . . . . . 6  |-  ( ph  ->  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  e.  dom  P )
44 prob01 28844 . . . . . 6  |-  ( ( P  e. Prob  /\  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  e. 
dom  P )  -> 
( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  e.  ( 0 [,] 1 ) )
452, 43, 44syl2anc 659 . . . . 5  |-  ( ph  ->  ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  e.  ( 0 [,] 1 ) )
46 0xr 9669 . . . . . 6  |-  0  e.  RR*
47 pnfxr 11373 . . . . . 6  |- +oo  e.  RR*
48 0le0 10665 . . . . . 6  |-  0  <_  0
49 1re 9624 . . . . . . 7  |-  1  e.  RR
50 ltpnf 11383 . . . . . . 7  |-  ( 1  e.  RR  ->  1  < +oo )
5149, 50ax-mp 5 . . . . . 6  |-  1  < +oo
52 iccssico 11648 . . . . . 6  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <_  0  /\  1  < +oo ) )  -> 
( 0 [,] 1
)  C_  ( 0 [,) +oo ) )
5346, 47, 48, 51, 52mp4an 671 . . . . 5  |-  ( 0 [,] 1 )  C_  ( 0 [,) +oo )
541, 40, 45, 53lmlimxrge0 28369 . . . 4  |-  ( ph  ->  ( ( P  o.  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) ( ~~> t `  ( TopOpen
`  ( RR*ss  (
0 [,] +oo )
) ) ) ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  <-> 
( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  ~~>  ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) ) )
5531, 54mpbid 210 . . 3  |-  ( ph  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  ~~>  ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) ) )
56 eqidd 2403 . . . . 5  |-  ( ph  ->  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) )  =  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )
57 fveq2 5848 . . . . 5  |-  ( a  =  ( XRV/𝑐  <_  i )  ->  ( P `  a )  =  ( P `  ( XRV/𝑐  <_  i ) ) )
5810, 56, 35, 57fmptco 6042 . . . 4  |-  ( ph  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  =  ( i  e.  NN  |->  ( P `  ( XRV/𝑐  <_  i ) ) ) )
59 dstfrv.3 . . . . . . 7  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( P `
 ( XRV/𝑐  <_  x ) ) ) )
6059adantr 463 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  F  =  ( x  e.  RR  |->  ( P `  ( XRV/𝑐  <_  x ) ) ) )
61 simpr 459 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN )  /\  x  =  i )  ->  x  =  i )
6261oveq2d 6293 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  x  =  i )  -> 
( XRV/𝑐  <_  x )  =  ( XRV/𝑐  <_  i ) )
6362fveq2d 5852 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  x  =  i )  -> 
( P `  ( XRV/𝑐  <_  x ) )  =  ( P `  ( XRV/𝑐  <_ 
i ) ) )
645, 10probvalrnd 28855 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( P `
 ( XRV/𝑐  <_  i ) )  e.  RR )
6560, 63, 9, 64fvmptd 5937 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  =  ( P `  ( XRV/𝑐  <_ 
i ) ) )
6665mpteq2dva 4480 . . . 4  |-  ( ph  ->  ( i  e.  NN  |->  ( F `  i ) )  =  ( i  e.  NN  |->  ( P `
 ( XRV/𝑐  <_  i ) ) ) )
6758, 66eqtr4d 2446 . . 3  |-  ( ph  ->  ( P  o.  (
i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  =  ( i  e.  NN  |->  ( F `  i ) ) )
6841fveq2d 5852 . . . 4  |-  ( ph  ->  ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  =  ( P `  U. dom  P ) )
69 probtot 28843 . . . . 5  |-  ( P  e. Prob  ->  ( P `  U. dom  P )  =  1 )
702, 69syl 17 . . . 4  |-  ( ph  ->  ( P `  U. dom  P )  =  1 )
7168, 70eqtrd 2443 . . 3  |-  ( ph  ->  ( P `  U. ran  ( i  e.  NN  |->  ( XRV/𝑐  <_  i ) ) )  =  1 )
7255, 67, 713brtr3d 4423 . 2  |-  ( ph  ->  ( i  e.  NN  |->  ( F `  i ) )  ~~>  1 )
73 1z 10934 . . 3  |-  1  e.  ZZ
74 reex 9612 . . . . 5  |-  RR  e.  _V
7574mptex 6123 . . . 4  |-  ( x  e.  RR  |->  ( P `
 ( XRV/𝑐  <_  x ) ) )  e.  _V
7659, 75syl6eqel 2498 . . 3  |-  ( ph  ->  F  e.  _V )
77 nnuz 11161 . . . 4  |-  NN  =  ( ZZ>= `  1 )
78 eqid 2402 . . . 4  |-  ( i  e.  NN  |->  ( F `
 i ) )  =  ( i  e.  NN  |->  ( F `  i ) )
7977, 78climmpt 13541 . . 3  |-  ( ( 1  e.  ZZ  /\  F  e.  _V )  ->  ( F  ~~>  1  <->  (
i  e.  NN  |->  ( F `  i ) )  ~~>  1 ) )
8073, 76, 79sylancr 661 . 2  |-  ( ph  ->  ( F  ~~>  1  <->  (
i  e.  NN  |->  ( F `  i ) )  ~~>  1 ) )
8172, 80mpbird 232 1  |-  ( ph  ->  F  ~~>  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058    C_ wss 3413   U.cuni 4190   class class class wbr 4394    |-> cmpt 4452   dom cdm 4822   ran crn 4823    o. ccom 4826    Fn wfn 5563   -->wf 5564   ` cfv 5568  (class class class)co 6277   RRcr 9520   0cc0 9521   1c1 9522    + caddc 9524   +oocpnf 9654   RR*cxr 9656    < clt 9657    <_ cle 9658   NNcn 10575   ZZcz 10904   [,)cico 11583   [,]cicc 11584    ~~> cli 13454   ↾s cress 14840   TopOpenctopn 15034   RR*scxrs 15112   ~~> tclm 20018  measurescmeas 28629  Probcprb 28838  rRndVarcrrv 28871  ∘RV/𝑐corvc 28886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-ac2 8874  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-acn 8354  df-ac 8528  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-shft 13047  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-limsup 13441  df-clim 13458  df-rlim 13459  df-sum 13656  df-ef 14010  df-sin 14012  df-cos 14013  df-pi 14015  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-ordt 15113  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-ps 16152  df-tsr 16153  df-plusf 16193  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-mhm 16288  df-submnd 16289  df-grp 16379  df-minusg 16380  df-sbg 16381  df-mulg 16382  df-subg 16520  df-cntz 16677  df-cmn 17122  df-abl 17123  df-mgp 17460  df-ur 17472  df-ring 17518  df-cring 17519  df-subrg 17745  df-abv 17784  df-lmod 17832  df-scaf 17833  df-sra 18136  df-rgmod 18137  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-fbas 18734  df-fg 18735  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-lp 19928  df-perf 19929  df-cn 20019  df-cnp 20020  df-lm 20021  df-haus 20107  df-tx 20353  df-hmeo 20546  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-tmd 20861  df-tgp 20862  df-tsms 20915  df-trg 20952  df-xms 21113  df-ms 21114  df-tms 21115  df-nm 21393  df-ngp 21394  df-nrg 21396  df-nlm 21397  df-ii 21671  df-cncf 21672  df-limc 22560  df-dv 22561  df-log 23234  df-esum 28461  df-siga 28542  df-sigagen 28573  df-brsiga 28616  df-meas 28630  df-mbfm 28685  df-prob 28839  df-rrv 28872  df-orvc 28887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator