MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Unicode version

Theorem dsmmsubg 18962
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p  |-  P  =  ( S X_s R )
dsmmsubg.h  |-  H  =  ( Base `  ( S  (+)m  R ) )
dsmmsubg.i  |-  ( ph  ->  I  e.  W )
dsmmsubg.s  |-  ( ph  ->  S  e.  V )
dsmmsubg.r  |-  ( ph  ->  R : I --> Grp )
Assertion
Ref Expression
dsmmsubg  |-  ( ph  ->  H  e.  (SubGrp `  P ) )

Proof of Theorem dsmmsubg
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2401 . 2  |-  ( ph  ->  ( Ps  H )  =  ( Ps  H ) )
2 eqidd 2401 . 2  |-  ( ph  ->  ( 0g `  P
)  =  ( 0g
`  P ) )
3 eqidd 2401 . 2  |-  ( ph  ->  ( +g  `  P
)  =  ( +g  `  P ) )
4 dsmmsubg.r . . . . . 6  |-  ( ph  ->  R : I --> Grp )
5 dsmmsubg.i . . . . . 6  |-  ( ph  ->  I  e.  W )
6 fex 6080 . . . . . 6  |-  ( ( R : I --> Grp  /\  I  e.  W )  ->  R  e.  _V )
74, 5, 6syl2anc 659 . . . . 5  |-  ( ph  ->  R  e.  _V )
8 eqid 2400 . . . . . 6  |-  { a  e.  ( Base `  ( S X_s R ) )  |  { b  e.  dom  R  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin }  =  { a  e.  (
Base `  ( S X_s R ) )  |  {
b  e.  dom  R  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin }
98dsmmbase 18954 . . . . 5  |-  ( R  e.  _V  ->  { a  e.  ( Base `  ( S X_s R ) )  |  { b  e.  dom  R  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
107, 9syl 17 . . . 4  |-  ( ph  ->  { a  e.  (
Base `  ( S X_s R ) )  |  {
b  e.  dom  R  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
11 ssrab2 3521 . . . 4  |-  { a  e.  ( Base `  ( S X_s R ) )  |  { b  e.  dom  R  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin }  C_  ( Base `  ( S X_s R ) )
1210, 11syl6eqssr 3490 . . 3  |-  ( ph  ->  ( Base `  ( S  (+)m  R ) )  C_  ( Base `  ( S X_s R ) ) )
13 dsmmsubg.h . . 3  |-  H  =  ( Base `  ( S  (+)m  R ) )
14 dsmmsubg.p . . . 4  |-  P  =  ( S X_s R )
1514fveq2i 5806 . . 3  |-  ( Base `  P )  =  (
Base `  ( S X_s R ) )
1612, 13, 153sstr4g 3480 . 2  |-  ( ph  ->  H  C_  ( Base `  P ) )
17 dsmmsubg.s . . 3  |-  ( ph  ->  S  e.  V )
18 grpmnd 16276 . . . . 5  |-  ( a  e.  Grp  ->  a  e.  Mnd )
1918ssriv 3443 . . . 4  |-  Grp  C_  Mnd
20 fss 5676 . . . 4  |-  ( ( R : I --> Grp  /\  Grp  C_  Mnd )  ->  R : I --> Mnd )
214, 19, 20sylancl 660 . . 3  |-  ( ph  ->  R : I --> Mnd )
22 eqid 2400 . . 3  |-  ( 0g
`  P )  =  ( 0g `  P
)
2314, 13, 5, 17, 21, 22dsmm0cl 18959 . 2  |-  ( ph  ->  ( 0g `  P
)  e.  H )
2453ad2ant1 1016 . . 3  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  I  e.  W )
25173ad2ant1 1016 . . 3  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  S  e.  V )
26213ad2ant1 1016 . . 3  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  R :
I --> Mnd )
27 simp2 996 . . 3  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  a  e.  H )
28 simp3 997 . . 3  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  b  e.  H )
29 eqid 2400 . . 3  |-  ( +g  `  P )  =  ( +g  `  P )
3014, 13, 24, 25, 26, 27, 28, 29dsmmacl 18960 . 2  |-  ( (
ph  /\  a  e.  H  /\  b  e.  H
)  ->  ( a
( +g  `  P ) b )  e.  H
)
3114, 5, 17, 4prdsgrpd 16393 . . . . 5  |-  ( ph  ->  P  e.  Grp )
3231adantr 463 . . . 4  |-  ( (
ph  /\  a  e.  H )  ->  P  e.  Grp )
3316sselda 3439 . . . 4  |-  ( (
ph  /\  a  e.  H )  ->  a  e.  ( Base `  P
) )
34 eqid 2400 . . . . 5  |-  ( Base `  P )  =  (
Base `  P )
35 eqid 2400 . . . . 5  |-  ( invg `  P )  =  ( invg `  P )
3634, 35grpinvcl 16309 . . . 4  |-  ( ( P  e.  Grp  /\  a  e.  ( Base `  P ) )  -> 
( ( invg `  P ) `  a
)  e.  ( Base `  P ) )
3732, 33, 36syl2anc 659 . . 3  |-  ( (
ph  /\  a  e.  H )  ->  (
( invg `  P ) `  a
)  e.  ( Base `  P ) )
38 simpr 459 . . . . . 6  |-  ( (
ph  /\  a  e.  H )  ->  a  e.  H )
39 eqid 2400 . . . . . . 7  |-  ( S 
(+)m  R )  =  ( S  (+)m  R )
405adantr 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  H )  ->  I  e.  W )
41 ffn 5668 . . . . . . . . 9  |-  ( R : I --> Grp  ->  R  Fn  I )
424, 41syl 17 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
4342adantr 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  H )  ->  R  Fn  I )
4414, 39, 34, 13, 40, 43dsmmelbas 18958 . . . . . 6  |-  ( (
ph  /\  a  e.  H )  ->  (
a  e.  H  <->  ( a  e.  ( Base `  P
)  /\  { b  e.  I  |  (
a `  b )  =/=  ( 0g `  ( R `  b )
) }  e.  Fin ) ) )
4538, 44mpbid 210 . . . . 5  |-  ( (
ph  /\  a  e.  H )  ->  (
a  e.  ( Base `  P )  /\  {
b  e.  I  |  ( a `  b
)  =/=  ( 0g
`  ( R `  b ) ) }  e.  Fin ) )
4645simprd 461 . . . 4  |-  ( (
ph  /\  a  e.  H )  ->  { b  e.  I  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin )
475ad2antrr 724 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  I  e.  W )
4817ad2antrr 724 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  S  e.  V )
494ad2antrr 724 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  R : I --> Grp )
5033adantr 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  a  e.  ( Base `  P
) )
51 simpr 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  b  e.  I )
5214, 47, 48, 49, 34, 35, 50, 51prdsinvgd2 18961 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  (
( ( invg `  P ) `  a
) `  b )  =  ( ( invg `  ( R `
 b ) ) `
 ( a `  b ) ) )
5352adantrr 715 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  H )  /\  (
b  e.  I  /\  ( a `  b
)  =  ( 0g
`  ( R `  b ) ) ) )  ->  ( (
( invg `  P ) `  a
) `  b )  =  ( ( invg `  ( R `
 b ) ) `
 ( a `  b ) ) )
54 fveq2 5803 . . . . . . . . 9  |-  ( ( a `  b )  =  ( 0g `  ( R `  b ) )  ->  ( ( invg `  ( R `
 b ) ) `
 ( a `  b ) )  =  ( ( invg `  ( R `  b
) ) `  ( 0g `  ( R `  b ) ) ) )
5554ad2antll 727 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  H )  /\  (
b  e.  I  /\  ( a `  b
)  =  ( 0g
`  ( R `  b ) ) ) )  ->  ( ( invg `  ( R `
 b ) ) `
 ( a `  b ) )  =  ( ( invg `  ( R `  b
) ) `  ( 0g `  ( R `  b ) ) ) )
564ffvelrnda 5963 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  I )  ->  ( R `  b )  e.  Grp )
5756adantlr 713 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  ( R `  b )  e.  Grp )
58 eqid 2400 . . . . . . . . . . 11  |-  ( 0g
`  ( R `  b ) )  =  ( 0g `  ( R `  b )
)
59 eqid 2400 . . . . . . . . . . 11  |-  ( invg `  ( R `
 b ) )  =  ( invg `  ( R `  b
) )
6058, 59grpinvid 16315 . . . . . . . . . 10  |-  ( ( R `  b )  e.  Grp  ->  (
( invg `  ( R `  b ) ) `  ( 0g
`  ( R `  b ) ) )  =  ( 0g `  ( R `  b ) ) )
6157, 60syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  (
( invg `  ( R `  b ) ) `  ( 0g
`  ( R `  b ) ) )  =  ( 0g `  ( R `  b ) ) )
6261adantrr 715 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  H )  /\  (
b  e.  I  /\  ( a `  b
)  =  ( 0g
`  ( R `  b ) ) ) )  ->  ( ( invg `  ( R `
 b ) ) `
 ( 0g `  ( R `  b ) ) )  =  ( 0g `  ( R `
 b ) ) )
6353, 55, 623eqtrd 2445 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  H )  /\  (
b  e.  I  /\  ( a `  b
)  =  ( 0g
`  ( R `  b ) ) ) )  ->  ( (
( invg `  P ) `  a
) `  b )  =  ( 0g `  ( R `  b ) ) )
6463expr 613 . . . . . 6  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  (
( a `  b
)  =  ( 0g
`  ( R `  b ) )  -> 
( ( ( invg `  P ) `
 a ) `  b )  =  ( 0g `  ( R `
 b ) ) ) )
6564necon3d 2625 . . . . 5  |-  ( ( ( ph  /\  a  e.  H )  /\  b  e.  I )  ->  (
( ( ( invg `  P ) `
 a ) `  b )  =/=  ( 0g `  ( R `  b ) )  -> 
( a `  b
)  =/=  ( 0g
`  ( R `  b ) ) ) )
6665ss2rabdv 3517 . . . 4  |-  ( (
ph  /\  a  e.  H )  ->  { b  e.  I  |  ( ( ( invg `  P ) `  a
) `  b )  =/=  ( 0g `  ( R `  b )
) }  C_  { b  e.  I  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) } )
67 ssfi 7693 . . . 4  |-  ( ( { b  e.  I  |  ( a `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin  /\  {
b  e.  I  |  ( ( ( invg `  P ) `
 a ) `  b )  =/=  ( 0g `  ( R `  b ) ) } 
C_  { b  e.  I  |  ( a `
 b )  =/=  ( 0g `  ( R `  b )
) } )  ->  { b  e.  I  |  ( ( ( invg `  P
) `  a ) `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin )
6846, 66, 67syl2anc 659 . . 3  |-  ( (
ph  /\  a  e.  H )  ->  { b  e.  I  |  ( ( ( invg `  P ) `  a
) `  b )  =/=  ( 0g `  ( R `  b )
) }  e.  Fin )
6914, 39, 34, 13, 40, 43dsmmelbas 18958 . . 3  |-  ( (
ph  /\  a  e.  H )  ->  (
( ( invg `  P ) `  a
)  e.  H  <->  ( (
( invg `  P ) `  a
)  e.  ( Base `  P )  /\  {
b  e.  I  |  ( ( ( invg `  P ) `
 a ) `  b )  =/=  ( 0g `  ( R `  b ) ) }  e.  Fin ) ) )
7037, 68, 69mpbir2and 921 . 2  |-  ( (
ph  /\  a  e.  H )  ->  (
( invg `  P ) `  a
)  e.  H )
711, 2, 3, 16, 23, 30, 70, 31issubgrpd2 16431 1  |-  ( ph  ->  H  e.  (SubGrp `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    =/= wne 2596   {crab 2755   _Vcvv 3056    C_ wss 3411   dom cdm 4940    Fn wfn 5518   -->wf 5519   ` cfv 5523  (class class class)co 6232   Fincfn 7472   Basecbs 14731   ↾s cress 14732   +g cplusg 14799   0gc0g 14944   X_scprds 14950   Mndcmnd 16133   Grpcgrp 16267   invgcminusg 16268  SubGrpcsubg 16409    (+)m cdsmm 18950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-1o 7085  df-oadd 7089  df-er 7266  df-map 7377  df-ixp 7426  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-sup 7853  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-nn 10495  df-2 10553  df-3 10554  df-4 10555  df-5 10556  df-6 10557  df-7 10558  df-8 10559  df-9 10560  df-10 10561  df-n0 10755  df-z 10824  df-dec 10938  df-uz 11044  df-fz 11642  df-struct 14733  df-ndx 14734  df-slot 14735  df-base 14736  df-sets 14737  df-ress 14738  df-plusg 14812  df-mulr 14813  df-sca 14815  df-vsca 14816  df-ip 14817  df-tset 14818  df-ple 14819  df-ds 14821  df-hom 14823  df-cco 14824  df-0g 14946  df-prds 14952  df-mgm 16086  df-sgrp 16125  df-mnd 16135  df-grp 16271  df-minusg 16272  df-subg 16412  df-dsmm 18951
This theorem is referenced by:  dsmmlss  18963
  Copyright terms: Public domain W3C validator