MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Unicode version

Theorem dsmmbas2 18575
Description: Base set of the direct sum module using the fndmin 5989 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p  |-  P  =  ( S X_s R )
dsmmbas2.b  |-  B  =  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
Assertion
Ref Expression
dsmmbas2  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  B  =  ( Base `  ( S  (+)m  R ) ) )
Distinct variable groups:    S, f    R, f    P, f    f, I   
f, V
Allowed substitution hint:    B( f)

Proof of Theorem dsmmbas2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2  |-  B  =  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
2 dsmmbas2.p . . . . . 6  |-  P  =  ( S X_s R )
32fveq2i 5869 . . . . 5  |-  ( Base `  P )  =  (
Base `  ( S X_s R ) )
4 rabeq 3107 . . . . 5  |-  ( (
Base `  P )  =  ( Base `  ( S X_s R ) )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  { f  e.  ( Base `  ( S X_s R ) )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin } )
53, 4ax-mp 5 . . . 4  |-  { f  e.  ( Base `  P
)  |  dom  (
f  \  ( 0g  o.  R ) )  e. 
Fin }  =  {
f  e.  ( Base `  ( S X_s R ) )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
6 simpll 753 . . . . . . . . . 10  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  R  Fn  I )
7 fvco2 5943 . . . . . . . . . 10  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
86, 7sylan 471 . . . . . . . . 9  |-  ( ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
98neeq2d 2745 . . . . . . . 8  |-  ( ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  /\  x  e.  I )  ->  ( ( f `  x )  =/=  (
( 0g  o.  R
) `  x )  <->  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) ) )
109rabbidva 3104 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  { x  e.  I  |  ( f `  x )  =/=  (
( 0g  o.  R
) `  x ) }  =  { x  e.  I  |  (
f `  x )  =/=  ( 0g `  ( R `  x )
) } )
11 eqid 2467 . . . . . . . . 9  |-  ( S
X_s
R )  =  ( S X_s R )
12 eqid 2467 . . . . . . . . 9  |-  ( Base `  ( S X_s R ) )  =  ( Base `  ( S X_s R ) )
13 noel 3789 . . . . . . . . . . . 12  |-  -.  f  e.  (/)
14 reldmprds 14707 . . . . . . . . . . . . . . . 16  |-  Rel  dom  X_s
1514ovprc1 6313 . . . . . . . . . . . . . . 15  |-  ( -.  S  e.  _V  ->  ( S X_s R )  =  (/) )
1615fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( -.  S  e.  _V  ->  (
Base `  ( S X_s R ) )  =  (
Base `  (/) ) )
17 base0 14532 . . . . . . . . . . . . . 14  |-  (/)  =  (
Base `  (/) )
1816, 17syl6eqr 2526 . . . . . . . . . . . . 13  |-  ( -.  S  e.  _V  ->  (
Base `  ( S X_s R ) )  =  (/) )
1918eleq2d 2537 . . . . . . . . . . . 12  |-  ( -.  S  e.  _V  ->  ( f  e.  ( Base `  ( S X_s R ) )  <->  f  e.  (/) ) )
2013, 19mtbiri 303 . . . . . . . . . . 11  |-  ( -.  S  e.  _V  ->  -.  f  e.  ( Base `  ( S X_s R ) ) )
2120con4i 130 . . . . . . . . . 10  |-  ( f  e.  ( Base `  ( S X_s R ) )  ->  S  e.  _V )
2221adantl 466 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  S  e.  _V )
23 simplr 754 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  I  e.  V )
24 simpr 461 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
f  e.  ( Base `  ( S X_s R ) ) )
2511, 12, 22, 23, 6, 24prdsbasfn 14729 . . . . . . . 8  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
f  Fn  I )
26 fn0g 15753 . . . . . . . . . . . 12  |-  0g  Fn  _V
27 dffn2 5732 . . . . . . . . . . . 12  |-  ( 0g  Fn  _V  <->  0g : _V
--> _V )
2826, 27mpbi 208 . . . . . . . . . . 11  |-  0g : _V
--> _V
29 dffn2 5732 . . . . . . . . . . . 12  |-  ( R  Fn  I  <->  R :
I --> _V )
3029biimpi 194 . . . . . . . . . . 11  |-  ( R  Fn  I  ->  R : I --> _V )
31 fco 5741 . . . . . . . . . . 11  |-  ( ( 0g : _V --> _V  /\  R : I --> _V )  ->  ( 0g  o.  R
) : I --> _V )
3228, 30, 31sylancr 663 . . . . . . . . . 10  |-  ( R  Fn  I  ->  ( 0g  o.  R ) : I --> _V )
33 ffn 5731 . . . . . . . . . 10  |-  ( ( 0g  o.  R ) : I --> _V  ->  ( 0g  o.  R )  Fn  I )
3432, 33syl 16 . . . . . . . . 9  |-  ( R  Fn  I  ->  ( 0g  o.  R )  Fn  I )
3534ad2antrr 725 . . . . . . . 8  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
( 0g  o.  R
)  Fn  I )
36 fndmdif 5986 . . . . . . . 8  |-  ( ( f  Fn  I  /\  ( 0g  o.  R
)  Fn  I )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e.  I  |  ( f `  x )  =/=  (
( 0g  o.  R
) `  x ) } )
3725, 35, 36syl2anc 661 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e.  I  |  ( f `
 x )  =/=  ( ( 0g  o.  R ) `  x
) } )
38 fndm 5680 . . . . . . . . 9  |-  ( R  Fn  I  ->  dom  R  =  I )
39 rabeq 3107 . . . . . . . . 9  |-  ( dom 
R  =  I  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  { x  e.  I  |  ( f `
 x )  =/=  ( 0g `  ( R `  x )
) } )
4038, 39syl 16 . . . . . . . 8  |-  ( R  Fn  I  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  {
x  e.  I  |  ( f `  x
)  =/=  ( 0g
`  ( R `  x ) ) } )
4140ad2antrr 725 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  { x  e.  I  |  ( f `
 x )  =/=  ( 0g `  ( R `  x )
) } )
4210, 37, 413eqtr4d 2518 . . . . . 6  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e. 
dom  R  |  (
f `  x )  =/=  ( 0g `  ( R `  x )
) } )
4342eleq1d 2536 . . . . 5  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
( dom  ( f  \  ( 0g  o.  R ) )  e. 
Fin 
<->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin ) )
4443rabbidva 3104 . . . 4  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  ( S X_s R ) )  |  dom  ( f  \  ( 0g  o.  R ) )  e.  Fin }  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin } )
455, 44syl5eq 2520 . . 3  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin } )
46 fnex 6128 . . . 4  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  R  e.  _V )
47 eqid 2467 . . . . 5  |-  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }
4847dsmmbase 18573 . . . 4  |-  ( R  e.  _V  ->  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
4946, 48syl 16 . . 3  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
5045, 49eqtrd 2508 . 2  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  ( Base `  ( S  (+)m  R ) ) )
511, 50syl5eq 2520 1  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  B  =  ( Base `  ( S  (+)m  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2818   _Vcvv 3113    \ cdif 3473   (/)c0 3785   dom cdm 4999    o. ccom 5003    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6285   Fincfn 7517   Basecbs 14493   0gc0g 14698   X_scprds 14704    (+)m cdsmm 18569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-ixp 7471  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10978  df-uz 11084  df-fz 11674  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-mulr 14572  df-sca 14574  df-vsca 14575  df-ip 14576  df-tset 14577  df-ple 14578  df-ds 14580  df-hom 14582  df-cco 14583  df-0g 14700  df-prds 14706  df-dsmm 18570
This theorem is referenced by:  dsmmfi  18576  frlmbas  18593  frlmbasOLD  18594
  Copyright terms: Public domain W3C validator