MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Unicode version

Theorem dsmmacl 18567
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p  |-  P  =  ( S X_s R )
dsmmcl.h  |-  H  =  ( Base `  ( S  (+)m  R ) )
dsmmcl.i  |-  ( ph  ->  I  e.  W )
dsmmcl.s  |-  ( ph  ->  S  e.  V )
dsmmcl.r  |-  ( ph  ->  R : I --> Mnd )
dsmmacl.j  |-  ( ph  ->  J  e.  H )
dsmmacl.k  |-  ( ph  ->  K  e.  H )
dsmmacl.a  |-  .+  =  ( +g  `  P )
Assertion
Ref Expression
dsmmacl  |-  ( ph  ->  ( J  .+  K
)  e.  H )

Proof of Theorem dsmmacl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2467 . . 3  |-  ( Base `  P )  =  (
Base `  P )
3 dsmmacl.a . . 3  |-  .+  =  ( +g  `  P )
4 dsmmcl.s . . 3  |-  ( ph  ->  S  e.  V )
5 dsmmcl.i . . 3  |-  ( ph  ->  I  e.  W )
6 dsmmcl.r . . 3  |-  ( ph  ->  R : I --> Mnd )
7 dsmmacl.j . . . . 5  |-  ( ph  ->  J  e.  H )
8 eqid 2467 . . . . . 6  |-  ( S 
(+)m  R )  =  ( S  (+)m  R )
9 dsmmcl.h . . . . . 6  |-  H  =  ( Base `  ( S  (+)m  R ) )
10 ffn 5731 . . . . . . 7  |-  ( R : I --> Mnd  ->  R  Fn  I )
116, 10syl 16 . . . . . 6  |-  ( ph  ->  R  Fn  I )
121, 8, 2, 9, 5, 11dsmmelbas 18565 . . . . 5  |-  ( ph  ->  ( J  e.  H  <->  ( J  e.  ( Base `  P )  /\  {
a  e.  I  |  ( J `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
137, 12mpbid 210 . . . 4  |-  ( ph  ->  ( J  e.  (
Base `  P )  /\  { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
1413simpld 459 . . 3  |-  ( ph  ->  J  e.  ( Base `  P ) )
15 dsmmacl.k . . . . 5  |-  ( ph  ->  K  e.  H )
161, 8, 2, 9, 5, 11dsmmelbas 18565 . . . . 5  |-  ( ph  ->  ( K  e.  H  <->  ( K  e.  ( Base `  P )  /\  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
1715, 16mpbid 210 . . . 4  |-  ( ph  ->  ( K  e.  (
Base `  P )  /\  { a  e.  I  |  ( K `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
1817simpld 459 . . 3  |-  ( ph  ->  K  e.  ( Base `  P ) )
191, 2, 3, 4, 5, 6, 14, 18prdsplusgcl 15770 . 2  |-  ( ph  ->  ( J  .+  K
)  e.  ( Base `  P ) )
204adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  S  e.  V )
215adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  I  e.  W )
2211adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  R  Fn  I )
2314adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  J  e.  ( Base `  P
) )
2418adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  K  e.  ( Base `  P
) )
25 simpr 461 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  a  e.  I )
261, 2, 20, 21, 22, 23, 24, 3, 25prdsplusgfval 14729 . . . . 5  |-  ( (
ph  /\  a  e.  I )  ->  (
( J  .+  K
) `  a )  =  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) ) )
2726neeq1d 2744 . . . 4  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J  .+  K ) `  a
)  =/=  ( 0g
`  ( R `  a ) )  <->  ( ( J `  a )
( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) ) )
2827rabbidva 3104 . . 3  |-  ( ph  ->  { a  e.  I  |  ( ( J 
.+  K ) `  a )  =/=  ( 0g `  ( R `  a ) ) }  =  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a )
) ( K `  a ) )  =/=  ( 0g `  ( R `  a )
) } )
2913simprd 463 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
3017simprd 463 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( K `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
31 unfi 7787 . . . . 5  |-  ( ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin  /\  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin )  -> 
( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin )
3229, 30, 31syl2anc 661 . . . 4  |-  ( ph  ->  ( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin )
33 neorian 2794 . . . . . . . . . 10  |-  ( ( ( J `  a
)  =/=  ( 0g
`  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  <->  -.  ( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) ) )
3433bicomi 202 . . . . . . . . 9  |-  ( -.  ( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) )  <->  ( ( J `
 a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) )
3534con1bii 331 . . . . . . . 8  |-  ( -.  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  <-> 
( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) ) )
366ffvelrnda 6021 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  ( R `  a )  e.  Mnd )
37 eqid 2467 . . . . . . . . . . . 12  |-  ( Base `  ( R `  a
) )  =  (
Base `  ( R `  a ) )
38 eqid 2467 . . . . . . . . . . . 12  |-  ( 0g
`  ( R `  a ) )  =  ( 0g `  ( R `  a )
)
3937, 38mndidcl 15756 . . . . . . . . . . 11  |-  ( ( R `  a )  e.  Mnd  ->  ( 0g `  ( R `  a ) )  e.  ( Base `  ( R `  a )
) )
4036, 39syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  ( 0g `  ( R `  a ) )  e.  ( Base `  ( R `  a )
) )
41 eqid 2467 . . . . . . . . . . 11  |-  ( +g  `  ( R `  a
) )  =  ( +g  `  ( R `
 a ) )
4237, 41, 38mndlid 15758 . . . . . . . . . 10  |-  ( ( ( R `  a
)  e.  Mnd  /\  ( 0g `  ( R `
 a ) )  e.  ( Base `  ( R `  a )
) )  ->  (
( 0g `  ( R `  a )
) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) )  =  ( 0g `  ( R `
 a ) ) )
4336, 40, 42syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
( 0g `  ( R `  a )
) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) )  =  ( 0g `  ( R `
 a ) ) )
44 oveq12 6293 . . . . . . . . . 10  |-  ( ( ( J `  a
)  =  ( 0g
`  ( R `  a ) )  /\  ( K `  a )  =  ( 0g `  ( R `  a ) ) )  ->  (
( J `  a
) ( +g  `  ( R `  a )
) ( K `  a ) )  =  ( ( 0g `  ( R `  a ) ) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) ) )
4544eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( J `  a
)  =  ( 0g
`  ( R `  a ) )  /\  ( K `  a )  =  ( 0g `  ( R `  a ) ) )  ->  (
( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =  ( 0g `  ( R `  a ) )  <->  ( ( 0g
`  ( R `  a ) ) ( +g  `  ( R `
 a ) ) ( 0g `  ( R `  a )
) )  =  ( 0g `  ( R `
 a ) ) ) )
4643, 45syl5ibrcom 222 . . . . . . . 8  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) )  ->  ( ( J `  a )
( +g  `  ( R `
 a ) ) ( K `  a
) )  =  ( 0g `  ( R `
 a ) ) ) )
4735, 46syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  ( -.  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  ->  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =  ( 0g `  ( R `
 a ) ) ) )
4847necon1ad 2683 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =/=  ( 0g `  ( R `  a ) )  ->  ( ( J `  a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) ) )
4948ss2rabdv 3581 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) } 
C_  { a  e.  I  |  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) } )
50 unrab 3769 . . . . 5  |-  ( { a  e.  I  |  ( J `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  u.  { a  e.  I  |  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) } )  =  { a  e.  I  |  ( ( J `
 a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) }
5149, 50syl6sseqr 3551 . . . 4  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) } 
C_  ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } ) )
52 ssfi 7740 . . . 4  |-  ( ( ( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin  /\  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =/=  ( 0g `  ( R `  a ) ) }  C_  ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  u.  { a  e.  I  |  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) } ) )  ->  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a )
) ( K `  a ) )  =/=  ( 0g `  ( R `  a )
) }  e.  Fin )
5332, 51, 52syl2anc 661 . . 3  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
5428, 53eqeltrd 2555 . 2  |-  ( ph  ->  { a  e.  I  |  ( ( J 
.+  K ) `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
551, 8, 2, 9, 5, 11dsmmelbas 18565 . 2  |-  ( ph  ->  ( ( J  .+  K )  e.  H  <->  ( ( J  .+  K
)  e.  ( Base `  P )  /\  {
a  e.  I  |  ( ( J  .+  K ) `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
5619, 54, 55mpbir2and 920 1  |-  ( ph  ->  ( J  .+  K
)  e.  H )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2818    u. cun 3474    C_ wss 3476    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   Fincfn 7516   Basecbs 14490   +g cplusg 14555   0gc0g 14695   X_scprds 14701   Mndcmnd 15726    (+)m cdsmm 18557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-fz 11673  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-hom 14579  df-cco 14580  df-0g 14697  df-prds 14703  df-mnd 15732  df-dsmm 18558
This theorem is referenced by:  dsmmsubg  18569
  Copyright terms: Public domain W3C validator