MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Unicode version

Theorem dscopn 20141
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscopn  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscopn
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
21dscmet 20140 . . . . . 6  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
3 metxmet 19884 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
42, 3syl 16 . . . . 5  |-  ( X  e.  V  ->  D  e.  ( *Met `  X ) )
5 eqid 2438 . . . . . 6  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
65elmopn 19992 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
74, 6syl 16 . . . 4  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
8 simpll 753 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  X  e.  V )
9 ssel2 3346 . . . . . . . . . 10  |-  ( ( u  C_  X  /\  v  e.  u )  ->  v  e.  X )
109adantll 713 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  v  e.  X )
118, 10jca 532 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  ( X  e.  V  /\  v  e.  X ) )
12 elsn 3886 . . . . . . . . . . . 12  |-  ( w  e.  { v }  <-> 
w  =  v )
13 eleq1a 2507 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  =  v  ->  w  e.  X )
)
14 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
)
1514a1i 11 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
) )
16 eqeq12 2450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  =  v  /\  y  =  w )  ->  ( x  =  y  <-> 
v  =  w ) )
1716ifbid 3806 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  v  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( v  =  w ,  0 ,  1 ) )
18 0re 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  RR
19 1re 9377 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
2018, 19keepel 3852 . . . . . . . . . . . . . . . . . . . . 21  |-  if ( v  =  w ,  0 ,  1 )  e.  RR
2120elexi 2977 . . . . . . . . . . . . . . . . . . . 20  |-  if ( v  =  w ,  0 ,  1 )  e.  _V
2217, 1, 21ovmpt2a 6216 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( v D w )  =  if ( v  =  w ,  0 ,  1 ) )
2322breq1d 4297 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  if ( v  =  w ,  0 ,  1 )  <  1 ) )
2419ltnri 9475 . . . . . . . . . . . . . . . . . . . . . 22  |-  -.  1  <  1
25 iffalse 3794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  1 )
2625breq1d 4297 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  v  =  w  -> 
( if ( v  =  w ,  0 ,  1 )  <  1  <->  1  <  1
) )
2724, 26mtbiri 303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  v  =  w  ->  -.  if ( v  =  w ,  0 ,  1 )  <  1
)
2827con4i 130 . . . . . . . . . . . . . . . . . . . 20  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  -> 
v  =  w )
29 iftrue 3792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  0 )
30 0lt1 9854 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
3129, 30syl6eqbr 4324 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  <  1 )
3228, 31impbii 188 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  v  =  w )
33 equcom 1732 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  <->  w  =  v )
3432, 33bitri 249 . . . . . . . . . . . . . . . . . 18  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  w  =  v )
3523, 34syl6rbb 262 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( v D w )  <  1 ) )
36 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  w  e.  X )
3736biantrurd 508 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  ( w  e.  X  /\  ( v D w )  <  1 ) ) )
3835, 37bitrd 253 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
3938ex 434 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  e.  X  -> 
( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) ) )
4013, 15, 39pm5.21ndd 354 . . . . . . . . . . . . . 14  |-  ( v  e.  X  ->  (
w  =  v  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4140adantl 466 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
42 1rp 10987 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
43 rpxr 10990 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
4442, 43ax-mp 5 . . . . . . . . . . . . . . 15  |-  1  e.  RR*
45 elbl 19938 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4644, 45mp3an3 1303 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X
)  ->  ( w  e.  ( v ( ball `  D ) 1 )  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
474, 46sylan 471 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4841, 47bitr4d 256 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
w  e.  ( v ( ball `  D
) 1 ) ) )
4912, 48syl5bb 257 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  {
v }  <->  w  e.  ( v ( ball `  D ) 1 ) ) )
5049eqrdv 2436 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  =  ( v ( ball `  D ) 1 ) )
51 blelrn 19967 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5244, 51mp3an3 1303 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X
)  ->  ( v
( ball `  D )
1 )  e.  ran  ( ball `  D )
)
534, 52sylan 471 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5450, 53eqeltrd 2512 . . . . . . . . 9  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  e.  ran  ( ball `  D
) )
55 snssi 4012 . . . . . . . . . 10  |-  ( v  e.  u  ->  { v }  C_  u )
56 ssnid 3901 . . . . . . . . . 10  |-  v  e. 
{ v }
5755, 56jctil 537 . . . . . . . . 9  |-  ( v  e.  u  ->  (
v  e.  { v }  /\  { v }  C_  u )
)
58 eleq2 2499 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( v  e.  w  <->  v  e.  {
v } ) )
59 sseq1 3372 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( w  C_  u 
<->  { v }  C_  u ) )
6058, 59anbi12d 710 . . . . . . . . . 10  |-  ( w  =  { v }  ->  ( ( v  e.  w  /\  w  C_  u )  <->  ( v  e.  { v }  /\  { v }  C_  u
) ) )
6160rspcev 3068 . . . . . . . . 9  |-  ( ( { v }  e.  ran  ( ball `  D
)  /\  ( v  e.  { v }  /\  { v }  C_  u
) )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6254, 57, 61syl2an 477 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  v  e.  X
)  /\  v  e.  u )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6311, 62sylancom 667 . . . . . . 7  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6463ralrimiva 2794 . . . . . 6  |-  ( ( X  e.  V  /\  u  C_  X )  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D )
( v  e.  w  /\  w  C_  u ) )
6564ex 434 . . . . 5  |-  ( X  e.  V  ->  (
u  C_  X  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D ) ( v  e.  w  /\  w  C_  u ) ) )
6665pm4.71d 634 . . . 4  |-  ( X  e.  V  ->  (
u  C_  X  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
677, 66bitr4d 256 . . 3  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  C_  X
) )
68 selpw 3862 . . 3  |-  ( u  e.  ~P X  <->  u  C_  X
)
6967, 68syl6bbr 263 . 2  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  e.  ~P X ) )
7069eqrdv 2436 1  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711    C_ wss 3323   ifcif 3786   ~Pcpw 3855   {csn 3872   class class class wbr 4287   ran crn 4836   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   RRcr 9273   0cc0 9274   1c1 9275   RR*cxr 9409    < clt 9410   RR+crp 10983   *Metcxmt 17776   Metcme 17777   ballcbl 17778   MetOpencmopn 17781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-bases 18480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator