MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscmet Structured version   Unicode version

Theorem dscmet 20821
Description: The discrete metric on any set  X. Definition 1.1-8 of [Kreyszig] p. 8. (Contributed by FL, 12-Oct-2006.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscmet  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscmet
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9585 . . . . . 6  |-  0  e.  RR
2 1re 9584 . . . . . 6  |-  1  e.  RR
31, 2keepel 4000 . . . . 5  |-  if ( x  =  y ,  0 ,  1 )  e.  RR
43rgen2w 2819 . . . 4  |-  A. x  e.  X  A. y  e.  X  if (
x  =  y ,  0 ,  1 )  e.  RR
5 dscmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
65fmpt2 6841 . . . 4  |-  ( A. x  e.  X  A. y  e.  X  if ( x  =  y ,  0 ,  1 )  e.  RR  <->  D :
( X  X.  X
) --> RR )
74, 6mpbi 208 . . 3  |-  D :
( X  X.  X
) --> RR
8 equequ1 1742 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  =  y  <->  w  =  y ) )
98ifbid 3954 . . . . . . . 8  |-  ( x  =  w  ->  if ( x  =  y ,  0 ,  1 )  =  if ( w  =  y ,  0 ,  1 ) )
10 equequ2 1743 . . . . . . . . 9  |-  ( y  =  v  ->  (
w  =  y  <->  w  =  v ) )
1110ifbid 3954 . . . . . . . 8  |-  ( y  =  v  ->  if ( w  =  y ,  0 ,  1 )  =  if ( w  =  v ,  0 ,  1 ) )
12 0nn0 10799 . . . . . . . . . 10  |-  0  e.  NN0
13 1nn0 10800 . . . . . . . . . 10  |-  1  e.  NN0
1412, 13keepel 4000 . . . . . . . . 9  |-  if ( w  =  v ,  0 ,  1 )  e.  NN0
1514elexi 3116 . . . . . . . 8  |-  if ( w  =  v ,  0 ,  1 )  e.  _V
169, 11, 5, 15ovmpt2 6413 . . . . . . 7  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( w D v )  =  if ( w  =  v ,  0 ,  1 ) )
1716eqeq1d 2462 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
if ( w  =  v ,  0 ,  1 )  =  0 ) )
18 iffalse 3941 . . . . . . . . . 10  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  1 )
19 ax-1ne0 9550 . . . . . . . . . . 11  |-  1  =/=  0
2019a1i 11 . . . . . . . . . 10  |-  ( -.  w  =  v  -> 
1  =/=  0 )
2118, 20eqnetrd 2753 . . . . . . . . 9  |-  ( -.  w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =/=  0 )
2221neneqd 2662 . . . . . . . 8  |-  ( -.  w  =  v  ->  -.  if ( w  =  v ,  0 ,  1 )  =  0 )
2322con4i 130 . . . . . . 7  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  ->  w  =  v )
24 iftrue 3938 . . . . . . 7  |-  ( w  =  v  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
2523, 24impbii 188 . . . . . 6  |-  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v )
2617, 25syl6bb 261 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( w D v )  =  0  <-> 
w  =  v ) )
2712, 13keepel 4000 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  NN0
2812, 13keepel 4000 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  NN0
2927, 28nn0addcli 10822 . . . . . . . . . 10  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0
30 elnn0 10786 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN0  <->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 ) )
3129, 30mpbi 208 . . . . . . . . 9  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
32 breq1 4443 . . . . . . . . . . . 12  |-  ( 0  =  if ( w  =  v ,  0 ,  1 )  -> 
( 0  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
33 breq1 4443 . . . . . . . . . . . 12  |-  ( 1  =  if ( w  =  v ,  0 ,  1 )  -> 
( 1  <_  1  <->  if ( w  =  v ,  0 ,  1 )  <_  1 ) )
34 0le1 10065 . . . . . . . . . . . 12  |-  0  <_  1
352leidi 10076 . . . . . . . . . . . 12  |-  1  <_  1
3632, 33, 34, 35keephyp 3997 . . . . . . . . . . 11  |-  if ( w  =  v ,  0 ,  1 )  <_  1
37 nnge1 10551 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
3814nn0rei 10795 . . . . . . . . . . . 12  |-  if ( w  =  v ,  0 ,  1 )  e.  RR
3929nn0rei 10795 . . . . . . . . . . . 12  |-  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  RR
4038, 2, 39letri 9702 . . . . . . . . . . 11  |-  ( ( if ( w  =  v ,  0 ,  1 )  <_  1  /\  1  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4136, 37, 40sylancr 663 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
4227nn0ge0i 10812 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  w ,  0 ,  1 )
4328nn0ge0i 10812 . . . . . . . . . . . . 13  |-  0  <_  if ( u  =  v ,  0 ,  1 )
4427nn0rei 10795 . . . . . . . . . . . . . 14  |-  if ( u  =  w ,  0 ,  1 )  e.  RR
4528nn0rei 10795 . . . . . . . . . . . . . 14  |-  if ( u  =  v ,  0 ,  1 )  e.  RR
4644, 45add20i 10085 . . . . . . . . . . . . 13  |-  ( ( 0  <_  if (
u  =  w ,  0 ,  1 )  /\  0  <_  if ( u  =  v ,  0 ,  1 ) )  ->  (
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) ) )
4742, 43, 46mp2an 672 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  <-> 
( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 ) )
48 equequ2 1743 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  (
u  =  v  <->  u  =  w ) )
4948ifbid 3954 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  if ( u  =  v ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
5049eqeq1d 2462 . . . . . . . . . . . . . . . . 17  |-  ( v  =  w  ->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  w ,  0 ,  1 )  =  0 ) )
5150, 48bibi12d 321 . . . . . . . . . . . . . . . 16  |-  ( v  =  w  ->  (
( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v
)  <->  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w ) ) )
52 equequ1 1742 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  u  ->  (
w  =  v  <->  u  =  v ) )
5352ifbid 3954 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  u  ->  if ( w  =  v ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
5453eqeq1d 2462 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  u  ->  ( if ( w  =  v ,  0 ,  1 )  =  0  <->  if ( u  =  v ,  0 ,  1 )  =  0 ) )
5554, 52bibi12d 321 . . . . . . . . . . . . . . . . 17  |-  ( w  =  u  ->  (
( if ( w  =  v ,  0 ,  1 )  =  0  <->  w  =  v
)  <->  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v ) ) )
5655, 25chvarv 1976 . . . . . . . . . . . . . . . 16  |-  ( if ( u  =  v ,  0 ,  1 )  =  0  <->  u  =  v )
5751, 56chvarv 1976 . . . . . . . . . . . . . . 15  |-  ( if ( u  =  w ,  0 ,  1 )  =  0  <->  u  =  w )
58 eqtr2 2487 . . . . . . . . . . . . . . 15  |-  ( ( u  =  w  /\  u  =  v )  ->  w  =  v )
5957, 56, 58syl2anb 479 . . . . . . . . . . . . . 14  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  w  =  v )
6059, 24syl 16 . . . . . . . . . . . . 13  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  =  0 )
611leidi 10076 . . . . . . . . . . . . 13  |-  0  <_  0
6260, 61syl6eqbr 4477 . . . . . . . . . . . 12  |-  ( ( if ( u  =  w ,  0 ,  1 )  =  0  /\  if ( u  =  v ,  0 ,  1 )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_  0 )
6347, 62sylbi 195 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
0 )
64 id 22 . . . . . . . . . . 11  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )
6563, 64breqtrrd 4466 . . . . . . . . . 10  |-  ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6641, 65jaoi 379 . . . . . . . . 9  |-  ( ( ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  e.  NN  \/  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) )  =  0 )  ->  if ( w  =  v ,  0 ,  1 )  <_ 
( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6731, 66mp1i 12 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  if ( w  =  v ,  0 ,  1 )  <_  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
6816adantl 466 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  =  if ( w  =  v ,  0 ,  1 ) )
69 eqeq12 2479 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  w )  ->  ( x  =  y  <-> 
u  =  w ) )
7069ifbid 3954 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  w ,  0 ,  1 ) )
7127elexi 3116 . . . . . . . . . . 11  |-  if ( u  =  w ,  0 ,  1 )  e.  _V
7270, 5, 71ovmpt2a 6408 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  w  e.  X )  ->  ( u D w )  =  if ( u  =  w ,  0 ,  1 ) )
7372adantrr 716 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D w )  =  if ( u  =  w ,  0 ,  1 ) )
74 eqeq12 2479 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  ( x  =  y  <-> 
u  =  v ) )
7574ifbid 3954 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( u  =  v ,  0 ,  1 ) )
7628elexi 3116 . . . . . . . . . . 11  |-  if ( u  =  v ,  0 ,  1 )  e.  _V
7775, 5, 76ovmpt2a 6408 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  v  e.  X )  ->  ( u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7877adantrl 715 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
u D v )  =  if ( u  =  v ,  0 ,  1 ) )
7973, 78oveq12d 6293 . . . . . . . 8  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
( u D w )  +  ( u D v ) )  =  ( if ( u  =  w ,  0 ,  1 )  +  if ( u  =  v ,  0 ,  1 ) ) )
8067, 68, 793brtr4d 4470 . . . . . . 7  |-  ( ( u  e.  X  /\  ( w  e.  X  /\  v  e.  X
) )  ->  (
w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
8180expcom 435 . . . . . 6  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( u  e.  X  ->  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) ) )
8281ralrimiv 2869 . . . . 5  |-  ( ( w  e.  X  /\  v  e.  X )  ->  A. u  e.  X  ( w D v )  <_  ( (
u D w )  +  ( u D v ) ) )
8326, 82jca 532 . . . 4  |-  ( ( w  e.  X  /\  v  e.  X )  ->  ( ( ( w D v )  =  0  <->  w  =  v
)  /\  A. u  e.  X  ( w D v )  <_ 
( ( u D w )  +  ( u D v ) ) ) )
8483rgen2a 2884 . . 3  |-  A. w  e.  X  A. v  e.  X  ( (
( w D v )  =  0  <->  w  =  v )  /\  A. u  e.  X  ( w D v )  <_  ( ( u D w )  +  ( u D v ) ) )
857, 84pm3.2i 455 . 2  |-  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) )
86 ismet 20554 . 2  |-  ( X  e.  V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. w  e.  X  A. v  e.  X  (
( ( w D v )  =  0  <-> 
w  =  v )  /\  A. u  e.  X  ( w D v )  <_  (
( u D w )  +  ( u D v ) ) ) ) ) )
8785, 86mpbiri 233 1  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   ifcif 3932   class class class wbr 4440    X. cxp 4990   -->wf 5575   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    <_ cle 9618   NNcn 10525   NN0cn0 10784   Metcme 18168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-met 18177
This theorem is referenced by:  dscopn  20822
  Copyright terms: Public domain W3C validator