MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdirfi Structured version   Unicode version

Theorem drsdirfi 15113
Description: Any finite number of elements in a directed set have a common upper bound. Here is where the non-emptiness constraint in df-drs 15104 first comes into play; without it we would need an additional constraint that  X not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b  |-  B  =  ( Base `  K
)
drsdirfi.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
drsdirfi  |-  ( ( K  e. Dirset  /\  X  C_  B  /\  X  e.  Fin )  ->  E. y  e.  B  A. z  e.  X  z  .<_  y )
Distinct variable groups:    y, K, z    y, B, z    y,  .<_ , z    y, X, z

Proof of Theorem drsdirfi
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3382 . . . . . 6  |-  ( a  =  (/)  ->  ( a 
C_  B  <->  (/)  C_  B
) )
21anbi2d 703 . . . . 5  |-  ( a  =  (/)  ->  ( ( K  e. Dirset  /\  a  C_  B )  <->  ( K  e. Dirset  /\  (/)  C_  B )
) )
3 raleq 2922 . . . . . 6  |-  ( a  =  (/)  ->  ( A. z  e.  a  z  .<_  y  <->  A. z  e.  (/)  z  .<_  y ) )
43rexbidv 2741 . . . . 5  |-  ( a  =  (/)  ->  ( E. y  e.  B  A. z  e.  a  z  .<_  y  <->  E. y  e.  B  A. z  e.  (/)  z  .<_  y ) )
52, 4imbi12d 320 . . . 4  |-  ( a  =  (/)  ->  ( ( ( K  e. Dirset  /\  a  C_  B )  ->  E. y  e.  B  A. z  e.  a  z  .<_  y )  <->  ( ( K  e. Dirset  /\  (/)  C_  B )  ->  E. y  e.  B  A. z  e.  (/)  z  .<_  y ) ) )
6 sseq1 3382 . . . . . 6  |-  ( a  =  b  ->  (
a  C_  B  <->  b  C_  B ) )
76anbi2d 703 . . . . 5  |-  ( a  =  b  ->  (
( K  e. Dirset  /\  a  C_  B )  <->  ( K  e. Dirset  /\  b  C_  B
) ) )
8 raleq 2922 . . . . . 6  |-  ( a  =  b  ->  ( A. z  e.  a 
z  .<_  y  <->  A. z  e.  b  z  .<_  y ) )
98rexbidv 2741 . . . . 5  |-  ( a  =  b  ->  ( E. y  e.  B  A. z  e.  a 
z  .<_  y  <->  E. y  e.  B  A. z  e.  b  z  .<_  y ) )
107, 9imbi12d 320 . . . 4  |-  ( a  =  b  ->  (
( ( K  e. Dirset  /\  a  C_  B )  ->  E. y  e.  B  A. z  e.  a 
z  .<_  y )  <->  ( ( K  e. Dirset  /\  b  C_  B )  ->  E. y  e.  B  A. z  e.  b  z  .<_  y ) ) )
11 sseq1 3382 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  B 
<->  ( b  u.  {
c } )  C_  B ) )
1211anbi2d 703 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( K  e. Dirset  /\  a  C_  B
)  <->  ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B ) ) )
13 raleq 2922 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( A. z  e.  a  z  .<_  y  <->  A. z  e.  (
b  u.  { c } ) z  .<_  y ) )
1413rexbidv 2741 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( E. y  e.  B  A. z  e.  a  z  .<_  y  <->  E. y  e.  B  A. z  e.  (
b  u.  { c } ) z  .<_  y ) )
1512, 14imbi12d 320 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( K  e. Dirset  /\  a  C_  B )  ->  E. y  e.  B  A. z  e.  a  z  .<_  y )  <->  ( ( K  e. Dirset  /\  ( b  u. 
{ c } ) 
C_  B )  ->  E. y  e.  B  A. z  e.  (
b  u.  { c } ) z  .<_  y ) ) )
16 sseq1 3382 . . . . . 6  |-  ( a  =  X  ->  (
a  C_  B  <->  X  C_  B
) )
1716anbi2d 703 . . . . 5  |-  ( a  =  X  ->  (
( K  e. Dirset  /\  a  C_  B )  <->  ( K  e. Dirset  /\  X  C_  B
) ) )
18 raleq 2922 . . . . . 6  |-  ( a  =  X  ->  ( A. z  e.  a 
z  .<_  y  <->  A. z  e.  X  z  .<_  y ) )
1918rexbidv 2741 . . . . 5  |-  ( a  =  X  ->  ( E. y  e.  B  A. z  e.  a 
z  .<_  y  <->  E. y  e.  B  A. z  e.  X  z  .<_  y ) )
2017, 19imbi12d 320 . . . 4  |-  ( a  =  X  ->  (
( ( K  e. Dirset  /\  a  C_  B )  ->  E. y  e.  B  A. z  e.  a 
z  .<_  y )  <->  ( ( K  e. Dirset  /\  X  C_  B )  ->  E. y  e.  B  A. z  e.  X  z  .<_  y ) ) )
21 drsbn0.b . . . . . . 7  |-  B  =  ( Base `  K
)
2221drsbn0 15112 . . . . . 6  |-  ( K  e. Dirset  ->  B  =/=  (/) )
23 ral0 3789 . . . . . . . . 9  |-  A. z  e.  (/)  z  .<_  y
2423jctr 542 . . . . . . . 8  |-  ( y  e.  B  ->  (
y  e.  B  /\  A. z  e.  (/)  z  .<_  y ) )
2524eximi 1625 . . . . . . 7  |-  ( E. y  y  e.  B  ->  E. y ( y  e.  B  /\  A. z  e.  (/)  z  .<_  y ) )
26 n0 3651 . . . . . . 7  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
27 df-rex 2726 . . . . . . 7  |-  ( E. y  e.  B  A. z  e.  (/)  z  .<_  y 
<->  E. y ( y  e.  B  /\  A. z  e.  (/)  z  .<_  y ) )
2825, 26, 273imtr4i 266 . . . . . 6  |-  ( B  =/=  (/)  ->  E. y  e.  B  A. z  e.  (/)  z  .<_  y )
2922, 28syl 16 . . . . 5  |-  ( K  e. Dirset  ->  E. y  e.  B  A. z  e.  (/)  z  .<_  y )
3029adantr 465 . . . 4  |-  ( ( K  e. Dirset  /\  (/)  C_  B
)  ->  E. y  e.  B  A. z  e.  (/)  z  .<_  y )
31 ssun1 3524 . . . . . . . . 9  |-  b  C_  ( b  u.  {
c } )
32 sstr 3369 . . . . . . . . 9  |-  ( ( b  C_  ( b  u.  { c } )  /\  ( b  u. 
{ c } ) 
C_  B )  -> 
b  C_  B )
3331, 32mpan 670 . . . . . . . 8  |-  ( ( b  u.  { c } )  C_  B  ->  b  C_  B )
3433anim2i 569 . . . . . . 7  |-  ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  ->  ( K  e. Dirset  /\  b  C_  B
) )
35 breq2 4301 . . . . . . . . . 10  |-  ( y  =  a  ->  (
z  .<_  y  <->  z  .<_  a ) )
3635ralbidv 2740 . . . . . . . . 9  |-  ( y  =  a  ->  ( A. z  e.  b 
z  .<_  y  <->  A. z  e.  b  z  .<_  a ) )
3736cbvrexv 2953 . . . . . . . 8  |-  ( E. y  e.  B  A. z  e.  b  z  .<_  y  <->  E. a  e.  B  A. z  e.  b 
z  .<_  a )
38 simpll 753 . . . . . . . . . . 11  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  K  e. Dirset )
39 simprl 755 . . . . . . . . . . 11  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  a  e.  B )
40 ssun2 3525 . . . . . . . . . . . . . 14  |-  { c }  C_  ( b  u.  { c } )
41 sstr 3369 . . . . . . . . . . . . . 14  |-  ( ( { c }  C_  ( b  u.  {
c } )  /\  ( b  u.  {
c } )  C_  B )  ->  { c }  C_  B )
4240, 41mpan 670 . . . . . . . . . . . . 13  |-  ( ( b  u.  { c } )  C_  B  ->  { c }  C_  B )
43 vex 2980 . . . . . . . . . . . . . 14  |-  c  e. 
_V
4443snss 4004 . . . . . . . . . . . . 13  |-  ( c  e.  B  <->  { c }  C_  B )
4542, 44sylibr 212 . . . . . . . . . . . 12  |-  ( ( b  u.  { c } )  C_  B  ->  c  e.  B )
4645ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  c  e.  B )
47 drsdirfi.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
4821, 47drsdir 15110 . . . . . . . . . . 11  |-  ( ( K  e. Dirset  /\  a  e.  B  /\  c  e.  B )  ->  E. y  e.  B  ( a  .<_  y  /\  c  .<_  y ) )
4938, 39, 46, 48syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  E. y  e.  B  ( a  .<_  y  /\  c  .<_  y ) )
50 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  A. z  e.  b  z  .<_  a )
51 drsprs 15111 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e. Dirset  ->  K  e.  Preset  )
5251ad5antr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  K  e.  Preset  )
5333ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  ->  b  C_  B )
5453adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  b  C_  B )
5554sselda 3361 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e. Dirset  /\  ( b  u. 
{ c } ) 
C_  B )  /\  a  e.  B )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  ->  z  e.  B )
5655adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  z  e.  B )
57 simp-4r 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  a  e.  B )
58 simprl 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  y  e.  B )
5958ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  y  e.  B )
60 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  z  .<_  a )
61 simprrl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  a  .<_  y )
6261ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  a  .<_  y )
6321, 47prstr 15108 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Preset  /\  (
z  e.  B  /\  a  e.  B  /\  y  e.  B )  /\  ( z  .<_  a  /\  a  .<_  y ) )  ->  z  .<_  y )
6452, 56, 57, 59, 60, 62, 63syl132anc 1236 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  /\  z  .<_  a )  ->  z  .<_  y )
6564ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( K  e. Dirset  /\  ( b  u. 
{ c } ) 
C_  B )  /\  a  e.  B )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  /\  z  e.  b )  ->  (
z  .<_  a  ->  z  .<_  y ) )
6665ralimdva 2799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  a  e.  B )  /\  (
y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  ( A. z  e.  b  z  .<_  a  ->  A. z  e.  b  z  .<_  y ) )
6766adantlrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  ( A. z  e.  b  z  .<_  a  ->  A. z  e.  b  z  .<_  y ) )
6850, 67mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  A. z  e.  b  z  .<_  y )
69 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  c  .<_  y )
70 breq1 4300 . . . . . . . . . . . . . . 15  |-  ( z  =  c  ->  (
z  .<_  y  <->  c  .<_  y ) )
7143, 70ralsn 3920 . . . . . . . . . . . . . 14  |-  ( A. z  e.  { c } z  .<_  y  <->  c  .<_  y )
7269, 71sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  A. z  e.  { c } z 
.<_  y )
73 ralun 3543 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  b  z  .<_  y  /\  A. z  e.  { c } z  .<_  y )  ->  A. z  e.  ( b  u.  { c } ) z  .<_  y )
7468, 72, 73syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  ( y  e.  B  /\  ( a  .<_  y  /\  c  .<_  y ) ) )  ->  A. z  e.  ( b  u.  {
c } ) z 
.<_  y )
7574expr 615 . . . . . . . . . . 11  |-  ( ( ( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  /\  (
a  e.  B  /\  A. z  e.  b  z 
.<_  a ) )  /\  y  e.  B )  ->  ( ( a  .<_  y  /\  c  .<_  y )  ->  A. z  e.  ( b  u.  { c } ) z  .<_  y ) )
7675reximdva 2833 . . . . . . . . . 10  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  ( E. y  e.  B  ( a  .<_  y  /\  c  .<_  y )  ->  E. y  e.  B  A. z  e.  (
b  u.  { c } ) z  .<_  y ) )
7749, 76mpd 15 . . . . . . . . 9  |-  ( ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  /\  ( a  e.  B  /\  A. z  e.  b  z  .<_  a ) )  ->  E. y  e.  B  A. z  e.  ( b  u.  {
c } ) z 
.<_  y )
7877rexlimdvaa 2847 . . . . . . . 8  |-  ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  ->  ( E. a  e.  B  A. z  e.  b  z  .<_  a  ->  E. y  e.  B  A. z  e.  ( b  u.  {
c } ) z 
.<_  y ) )
7937, 78syl5bi 217 . . . . . . 7  |-  ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  ->  ( E. y  e.  B  A. z  e.  b  z  .<_  y  ->  E. y  e.  B  A. z  e.  ( b  u.  {
c } ) z 
.<_  y ) )
8034, 79embantd 54 . . . . . 6  |-  ( ( K  e. Dirset  /\  (
b  u.  { c } )  C_  B
)  ->  ( (
( K  e. Dirset  /\  b  C_  B )  ->  E. y  e.  B  A. z  e.  b  z  .<_  y )  ->  E. y  e.  B  A. z  e.  ( b  u.  {
c } ) z 
.<_  y ) )
8180com12 31 . . . . 5  |-  ( ( ( K  e. Dirset  /\  b  C_  B )  ->  E. y  e.  B  A. z  e.  b  z  .<_  y )  ->  ( ( K  e. Dirset  /\  ( b  u.  { c } )  C_  B )  ->  E. y  e.  B  A. z  e.  (
b  u.  { c } ) z  .<_  y ) )
8281a1i 11 . . . 4  |-  ( b  e.  Fin  ->  (
( ( K  e. Dirset  /\  b  C_  B )  ->  E. y  e.  B  A. z  e.  b 
z  .<_  y )  -> 
( ( K  e. Dirset  /\  ( b  u.  {
c } )  C_  B )  ->  E. y  e.  B  A. z  e.  ( b  u.  {
c } ) z 
.<_  y ) ) )
835, 10, 15, 20, 30, 82findcard2 7557 . . 3  |-  ( X  e.  Fin  ->  (
( K  e. Dirset  /\  X  C_  B )  ->  E. y  e.  B  A. z  e.  X  z  .<_  y ) )
8483com12 31 . 2  |-  ( ( K  e. Dirset  /\  X  C_  B )  ->  ( X  e.  Fin  ->  E. y  e.  B  A. z  e.  X  z  .<_  y ) )
85843impia 1184 1  |-  ( ( K  e. Dirset  /\  X  C_  B  /\  X  e.  Fin )  ->  E. y  e.  B  A. z  e.  X  z  .<_  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721    u. cun 3331    C_ wss 3333   (/)c0 3642   {csn 3882   class class class wbr 4297   ` cfv 5423   Fincfn 7315   Basecbs 14179   lecple 14250    Preset cpreset 15101  Dirsetcdrs 15102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-om 6482  df-1o 6925  df-er 7106  df-en 7316  df-fin 7319  df-preset 15103  df-drs 15104
This theorem is referenced by:  isdrs2  15114  ipodrsfi  15338
  Copyright terms: Public domain W3C validator