MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsb2 Structured version   Unicode version

Theorem drsb2 2075
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
drsb2  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )

Proof of Theorem drsb2
StepHypRef Expression
1 sbequ 2073 . 2  |-  ( x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
21sps 1801 1  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1368   [wsb 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-12 1793  ax-13 1944
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-sb 1702
This theorem is referenced by:  sbcom3  2111  sb9iOLD  2134  sbal2  2179
  Copyright terms: Public domain W3C validator