Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab2 Structured version   Unicode version

Theorem dropab2 31561
 Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab2

Proof of Theorem dropab2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opeq2 4220 . . . . . . . 8
21sps 1866 . . . . . . 7
32eqeq2d 2471 . . . . . 6
43anbi1d 704 . . . . 5
54drex1 2070 . . . 4
65drex2 2071 . . 3
76abbidv 2593 . 2
8 df-opab 4516 . 2
9 df-opab 4516 . 2
107, 8, 93eqtr4g 2523 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369  wal 1393   wceq 1395  wex 1613  cab 2442  cop 4038  copab 4514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-opab 4516 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator