MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Unicode version

Theorem drngnidl 16255
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
drngnidl.b  |-  B  =  ( Base `  R
)
drngnidl.z  |-  .0.  =  ( 0g `  R )
drngnidl.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
drngnidl  |-  ( R  e.  DivRing  ->  U  =  { {  .0.  } ,  B } )

Proof of Theorem drngnidl
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =  {  .0.  } )  ->  a  =  {  .0.  } )
21orcd 382 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =  {  .0.  } )  ->  (
a  =  {  .0.  }  \/  a  =  B ) )
3 drngrng 15797 . . . . . . . . . . 11  |-  ( R  e.  DivRing  ->  R  e.  Ring )
43ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  R  e.  Ring )
5 simplr 732 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  e.  U )
6 simpr 448 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  =/=  {  .0.  } )
7 drngnidl.u . . . . . . . . . . 11  |-  U  =  (LIdeal `  R )
8 drngnidl.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
97, 8lidlnz 16254 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  a  e.  U  /\  a  =/=  {  .0.  } )  ->  E. b  e.  a  b  =/=  .0.  )
104, 5, 6, 9syl3anc 1184 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  E. b  e.  a  b  =/=  .0.  )
11 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  R  e.  DivRing )
12 drngnidl.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  R
)
1312, 7lidlssOLD 16236 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  a  C_  B )
1413sselda 3308 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  b  e.  a
)  ->  b  e.  B )
1514adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  e.  B )
16 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  =/=  .0.  )
17 eqid 2404 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
18 eqid 2404 . . . . . . . . . . . . . 14  |-  ( 1r
`  R )  =  ( 1r `  R
)
19 eqid 2404 . . . . . . . . . . . . . 14  |-  ( invr `  R )  =  (
invr `  R )
2012, 8, 17, 18, 19drnginvrl 15809 . . . . . . . . . . . . 13  |-  ( ( R  e.  DivRing  /\  b  e.  B  /\  b  =/=  .0.  )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  =  ( 1r `  R
) )
2111, 15, 16, 20syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  =  ( 1r `  R
) )
223ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  R  e.  Ring )
23 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  a  e.  U )
2412, 8, 19drnginvrcl 15807 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  b  e.  B  /\  b  =/=  .0.  )  ->  (
( invr `  R ) `  b )  e.  B
)
2511, 15, 16, 24syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( invr `  R ) `  b )  e.  B
)
26 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  e.  a )
277, 12, 17lidlmcl 16243 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  a  e.  U )  /\  ( ( (
invr `  R ) `  b )  e.  B  /\  b  e.  a
) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  e.  a )
2822, 23, 25, 26, 27syl22anc 1185 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  e.  a )
2921, 28eqeltrrd 2479 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  ( 1r `  R )  e.  a )
3029rexlimdvaa 2791 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  ( E. b  e.  a 
b  =/=  .0.  ->  ( 1r `  R )  e.  a ) )
3130imp 419 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  E. b  e.  a  b  =/=  .0.  )  ->  ( 1r `  R
)  e.  a )
3210, 31syldan 457 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( 1r `  R )  e.  a )
337, 12, 18lidl1el 16244 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  a  e.  U )  ->  (
( 1r `  R
)  e.  a  <->  a  =  B ) )
343, 33sylan 458 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  (
( 1r `  R
)  e.  a  <->  a  =  B ) )
3534adantr 452 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( ( 1r `  R )  e.  a  <->  a  =  B ) )
3632, 35mpbid 202 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  =  B )
3736olcd 383 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( a  =  {  .0.  }  \/  a  =  B )
)
382, 37pm2.61dane 2645 . . . . 5  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  (
a  =  {  .0.  }  \/  a  =  B ) )
39 vex 2919 . . . . . 6  |-  a  e. 
_V
4039elpr 3792 . . . . 5  |-  ( a  e.  { {  .0.  } ,  B }  <->  ( a  =  {  .0.  }  \/  a  =  B )
)
4138, 40sylibr 204 . . . 4  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  a  e.  { {  .0.  } ,  B } )
4241ex 424 . . 3  |-  ( R  e.  DivRing  ->  ( a  e.  U  ->  a  e.  { {  .0.  } ,  B } ) )
4342ssrdv 3314 . 2  |-  ( R  e.  DivRing  ->  U  C_  { {  .0.  } ,  B }
)
447, 8lidl0 16245 . . . 4  |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
457, 12lidl1 16246 . . . 4  |-  ( R  e.  Ring  ->  B  e.  U )
46 snex 4365 . . . . . 6  |-  {  .0.  }  e.  _V
47 fvex 5701 . . . . . . 7  |-  ( Base `  R )  e.  _V
4812, 47eqeltri 2474 . . . . . 6  |-  B  e. 
_V
4946, 48prss 3912 . . . . 5  |-  ( ( {  .0.  }  e.  U  /\  B  e.  U
)  <->  { {  .0.  } ,  B }  C_  U
)
5049bicomi 194 . . . 4  |-  ( { {  .0.  } ,  B }  C_  U  <->  ( {  .0.  }  e.  U  /\  B  e.  U )
)
5144, 45, 50sylanbrc 646 . . 3  |-  ( R  e.  Ring  ->  { {  .0.  } ,  B }  C_  U )
523, 51syl 16 . 2  |-  ( R  e.  DivRing  ->  { {  .0.  } ,  B }  C_  U )
5343, 52eqssd 3325 1  |-  ( R  e.  DivRing  ->  U  =  { {  .0.  } ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   _Vcvv 2916    C_ wss 3280   {csn 3774   {cpr 3775   ` cfv 5413  (class class class)co 6040   Basecbs 13424   .rcmulr 13485   0gc0g 13678   Ringcrg 15615   1rcur 15617   invrcinvr 15731   DivRingcdr 15790  LIdealclidl 16197
This theorem is referenced by:  drnglpir  16279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-drng 15792  df-subrg 15821  df-lmod 15907  df-lss 15964  df-sra 16199  df-rgmod 16200  df-lidl 16201
  Copyright terms: Public domain W3C validator