Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex1 Structured version   Visualization version   Unicode version

Theorem drex1 2176
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
drex1

Proof of Theorem drex1
StepHypRef Expression
1 dral1.1 . . . . 5
21notbid 301 . . . 4
32dral1 2174 . . 3
43notbid 301 . 2
5 df-ex 1672 . 2
6 df-ex 1672 . 2
74, 5, 63bitr4g 296 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 189  wal 1450  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676 This theorem is referenced by:  exdistrf  2182  drsb1  2226  eujustALT  2322  copsexg  4687  dfid3  4755  dropab1  36870  dropab2  36871  e2ebind  37000  e2ebindVD  37372  e2ebindALT  37389
 Copyright terms: Public domain W3C validator