![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dral2 | Structured version Visualization version Unicode version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2174. (Revised by Wolf Lammen, 4-Mar-2018.) |
Ref | Expression |
---|---|
dral1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dral2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2165 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dral1.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | albid 1983 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 |
This theorem depends on definitions: df-bi 190 df-an 378 df-ex 1672 df-nf 1676 |
This theorem is referenced by: dral1ALT 2175 sbal1 2309 sbal2 2310 drnfc1 2629 drnfc2 2630 axpownd 9044 wl-sbalnae 31962 |
Copyright terms: Public domain | W3C validator |