MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1-o Unicode version

Theorem dral1-o 1856
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral1 1855 using ax-10o 1835. (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral1-o  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )

Proof of Theorem dral1-o
StepHypRef Expression
1 hbae-o 1841 . . . 4  |-  ( A. x  x  =  y  ->  A. x A. x  x  =  y )
2 dral1.1 . . . . 5  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
32biimpd 200 . . . 4  |-  ( A. x  x  =  y  ->  ( ph  ->  ps ) )
41, 3alimdh 1551 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. x ps )
)
5 ax-10o 1835 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ps 
->  A. y ps )
)
64, 5syld 42 . 2  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ps )
)
7 hbae-o 1841 . . . 4  |-  ( A. x  x  =  y  ->  A. y A. x  x  =  y )
82biimprd 216 . . . 4  |-  ( A. x  x  =  y  ->  ( ps  ->  ph )
)
97, 8alimdh 1551 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. y ph )
)
10 ax-10o 1835 . . . 4  |-  ( A. y  y  =  x  ->  ( A. y ph  ->  A. x ph )
)
1110alequcoms-o 1838 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ph  ->  A. x ph )
)
129, 11syld 42 . 2  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. x ph )
)
136, 12impbid 185 1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532
This theorem is referenced by:  ax11  1941  a16g-o  2001  ax11indalem  2110  ax11inda2ALT  2111
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-12o 1664  ax-9 1684  ax-4 1692  ax-10o 1835
This theorem depends on definitions:  df-bi 179  df-nf 1540
  Copyright terms: Public domain W3C validator