MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem1 Structured version   Unicode version

Theorem dquartlem1 22205
Description: Lemma for dquart 22207. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
Assertion
Ref Expression
dquartlem1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )

Proof of Theorem dquartlem1
StepHypRef Expression
1 dquart.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
21sqcld 12002 . . . . . 6  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
3 dquart.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
4 2cn 10388 . . . . . . . . . . 11  |-  2  e.  CC
5 dquart.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
6 mulcl 9362 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
74, 5, 6sylancr 658 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
87sqcld 12002 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
93, 8eqeltrd 2515 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
10 dquart.b . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
119, 10addcld 9401 . . . . . . 7  |-  ( ph  ->  ( M  +  B
)  e.  CC )
1211halfcld 10565 . . . . . 6  |-  ( ph  ->  ( ( M  +  B )  /  2
)  e.  CC )
132, 12addcld 9401 . . . . 5  |-  ( ph  ->  ( ( X ^
2 )  +  ( ( M  +  B
)  /  2 ) )  e.  CC )
149halfcld 10565 . . . . . . . 8  |-  ( ph  ->  ( M  /  2
)  e.  CC )
1514, 1mulcld 9402 . . . . . . 7  |-  ( ph  ->  ( ( M  / 
2 )  x.  X
)  e.  CC )
16 dquart.c . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
17 4cn 10395 . . . . . . . . 9  |-  4  e.  CC
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
19 4ne0 10414 . . . . . . . . 9  |-  4  =/=  0
2019a1i 11 . . . . . . . 8  |-  ( ph  ->  4  =/=  0 )
2116, 18, 20divcld 10103 . . . . . . 7  |-  ( ph  ->  ( C  /  4
)  e.  CC )
2215, 21subcld 9715 . . . . . 6  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  e.  CC )
23 dquart.m0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
243, 23eqnetrrd 2626 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =/=  0 )
25 sqne0 11928 . . . . . . . . . 10  |-  ( ( 2  x.  S )  e.  CC  ->  (
( ( 2  x.  S ) ^ 2 )  =/=  0  <->  (
2  x.  S )  =/=  0 ) )
267, 25syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S ) ^
2 )  =/=  0  <->  ( 2  x.  S )  =/=  0 ) )
2724, 26mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  =/=  0 )
28 mulne0b 9973 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
294, 5, 28sylancr 658 . . . . . . . 8  |-  ( ph  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
3027, 29mpbird 232 . . . . . . 7  |-  ( ph  ->  ( 2  =/=  0  /\  S  =/=  0
) )
3130simprd 460 . . . . . 6  |-  ( ph  ->  S  =/=  0 )
3222, 5, 31divcld 10103 . . . . 5  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  e.  CC )
3313, 32addcld 9401 . . . 4  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
344a1i 11 . . . 4  |-  ( ph  ->  2  e.  CC )
35 2ne0 10410 . . . . 5  |-  2  =/=  0
3635a1i 11 . . . 4  |-  ( ph  ->  2  =/=  0 )
3733, 34, 36diveq0ad 10113 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  0 ) )
382, 12, 32addassd 9404 . . . . . 6  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) ) )
3938oveq1d 6105 . . . . 5  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( X ^ 2 )  +  ( ( ( M  +  B
)  /  2 )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) ) )  /  2 ) )
4012, 32addcld 9401 . . . . . 6  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
412, 40, 34, 36divdird 10141 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) )  /  2 )  =  ( ( ( X ^ 2 )  /  2 )  +  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
) ) )
422, 34, 36divrec2d 10107 . . . . . 6  |-  ( ph  ->  ( ( X ^
2 )  /  2
)  =  ( ( 1  /  2 )  x.  ( X ^
2 ) ) )
4315, 21, 5, 31divsubdird 10142 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( ( M  / 
2 )  x.  X
)  /  S )  -  ( ( C  /  4 )  /  S ) ) )
4414, 1, 5, 31div23d 10140 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( ( M  /  2
)  /  S )  x.  X ) )
455sqvald 12001 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S ^ 2 )  =  ( S  x.  S ) )
4645oveq2d 6106 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( 2  x.  ( S  x.  S
) ) )
47 sqmul 11925 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
484, 5, 47sylancr 658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
494sqvali 11941 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
5049oveq1i 6100 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2 ^ 2 )  x.  ( S ^
2 ) )  =  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )
5148, 50syl6eq 2489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2  x.  2 )  x.  ( S ^
2 ) ) )
525sqcld 12002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
5334, 34, 52mulassd 9405 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
543, 51, 533eqtrd 2477 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
5554oveq1d 6105 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  ( 2  x.  ( S ^
2 ) ) )  /  2 ) )
56 mulcl 9362 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( S ^ 2 )  e.  CC )  -> 
( 2  x.  ( S ^ 2 ) )  e.  CC )
574, 52, 56sylancr 658 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  e.  CC )
5857, 34, 36divcan3d 10108 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2  x.  ( 2  x.  ( S ^ 2 ) ) )  /  2 )  =  ( 2  x.  ( S ^ 2 ) ) )
5955, 58eqtrd 2473 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  /  2
)  =  ( 2  x.  ( S ^
2 ) ) )
6034, 5, 5mulassd 9405 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  S )  x.  S
)  =  ( 2  x.  ( S  x.  S ) ) )
6146, 59, 603eqtr4d 2483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  S )  x.  S ) )
6261oveq1d 6105 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( ( ( 2  x.  S
)  x.  S )  /  S ) )
637, 5, 31divcan4d 10109 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  S )  /  S
)  =  ( 2  x.  S ) )
6462, 63eqtrd 2473 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( 2  x.  S ) )
6564oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  /  S )  x.  X
)  =  ( ( 2  x.  S )  x.  X ) )
6644, 65eqtrd 2473 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( 2  x.  S )  x.  X ) )
6766oveq1d 6105 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  /  S )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
6843, 67eqtrd 2473 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
6968oveq2d 6106 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( M  +  B )  /  2 )  +  ( ( ( 2  x.  S )  x.  X )  -  (
( C  /  4
)  /  S ) ) ) )
707, 1mulcld 9402 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  e.  CC )
7121, 5, 31divcld 10103 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  / 
4 )  /  S
)  e.  CC )
7212, 70, 71addsub12d 9738 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( 2  x.  S )  x.  X
)  -  ( ( C  /  4 )  /  S ) ) )  =  ( ( ( 2  x.  S
)  x.  X )  +  ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) ) ) )
7369, 72eqtrd 2473 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) ) )
7473oveq1d 6105 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  +  ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) ) )  /  2 ) )
7512, 71subcld 9715 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  e.  CC )
7670, 75, 34, 36divdird 10141 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  /  2 )  +  ( ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) )  / 
2 ) ) )
7734, 5, 1mulassd 9405 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  =  ( 2  x.  ( S  x.  X ) ) )
7877oveq1d 6105 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( ( 2  x.  ( S  x.  X ) )  /  2 ) )
795, 1mulcld 9402 . . . . . . . . . 10  |-  ( ph  ->  ( S  x.  X
)  e.  CC )
8079, 34, 36divcan3d 10108 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( S  x.  X
) )  /  2
)  =  ( S  x.  X ) )
8178, 80eqtrd 2473 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( S  x.  X ) )
8252negcld 9702 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
8310halfcld 10565 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  /  2
)  e.  CC )
8482, 83subcld 9715 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( B  /  2
) )  e.  CC )
8552, 84, 71subsub4d 9746 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( -u ( S ^
2 )  -  ( B  /  2 ) ) )  -  ( ( C  /  4 )  /  S ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  /  2
) )  +  ( ( C  /  4
)  /  S ) ) ) )
869, 10, 34, 36divdird 10141 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( M  /  2 )  +  ( B  / 
2 ) ) )
87522timesd 10563 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( ( S ^ 2 )  +  ( S ^ 2 ) ) )
8859, 87eqtrd 2473 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  /  2
)  =  ( ( S ^ 2 )  +  ( S ^
2 ) ) )
8988oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  / 
2 )  +  ( B  /  2 ) )  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9086, 89eqtrd 2473 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9152, 52, 83addassd 9404 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  /  2 ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9252, 83addcld 9401 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S ^
2 )  +  ( B  /  2 ) )  e.  CC )
9352, 92subnegd 9722 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9452, 83negdi2d 9729 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( ( S ^ 2 )  +  ( B  /  2
) )  =  (
-u ( S ^
2 )  -  ( B  /  2 ) ) )
9594oveq2d 6106 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9693, 95eqtr3d 2475 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S ^
2 )  +  ( ( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9790, 91, 963eqtrd 2477 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9897oveq1d 6105 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  / 
2 ) ) )  -  ( ( C  /  4 )  /  S ) ) )
99 dquart.i2 . . . . . . . . . . 11  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
10099oveq2d 6106 . . . . . . . . . 10  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  / 
2 ) )  +  ( ( C  / 
4 )  /  S
) ) ) )
10185, 98, 1003eqtr4d 2483 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
102101oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) )  /  2
)  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) )
10381, 102oveq12d 6108 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  /  2 ) )  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10474, 76, 1033eqtrd 2477 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10542, 104oveq12d 6108 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  /  2 ) )  =  ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) )
10639, 41, 1053eqtrd 2477 . . . 4  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( 1  /  2
)  x.  ( X ^ 2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
) ) ) )
107106eqeq1d 2449 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
10837, 107bitr3d 255 . 2  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
109 ax-1cn 9336 . . . 4  |-  1  e.  CC
110 halfcl 10546 . . . 4  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
111109, 110mp1i 12 . . 3  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
112 ax-1ne0 9347 . . . . 5  |-  1  =/=  0
113109, 4, 112, 35divne0i 10075 . . . 4  |-  ( 1  /  2 )  =/=  0
114113a1i 11 . . 3  |-  ( ph  ->  ( 1  /  2
)  =/=  0 )
115 dquart.i . . . . . 6  |-  ( ph  ->  I  e.  CC )
116115sqcld 12002 . . . . 5  |-  ( ph  ->  ( I ^ 2 )  e.  CC )
11752, 116subcld 9715 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )
118117halfcld 10565 . . 3  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
)  e.  CC )
119109a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
120 2cnne0 10532 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
121120a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
122 divmuldiv 10027 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )  /\  ( ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( (
1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) )  =  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) ) )
123119, 117, 121, 121, 122syl22anc 1214 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( 1  x.  ( ( S ^ 2 )  -  ( I ^
2 ) ) )  /  ( 2  x.  2 ) ) )
124117mulid2d 9400 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
125 2t2e4 10467 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
126125a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  2 )  =  4 )
127124, 126oveq12d 6108 . . . . . . . 8  |-  ( ph  ->  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
128123, 127eqtrd 2473 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
129128oveq2d 6106 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( 4  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
4 ) ) )
130117, 18, 20divcan2d 10105 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  4 ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
131129, 130eqtrd 2473 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
132131oveq2d 6106 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
4  x.  ( ( 1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) ) )  =  ( ( S ^ 2 )  -  ( ( S ^ 2 )  -  ( I ^ 2 ) ) ) )
13352, 116nncand 9720 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( I ^ 2 ) )
134132, 133eqtr2d 2474 . . 3  |-  ( ph  ->  ( I ^ 2 )  =  ( ( S ^ 2 )  -  ( 4  x.  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) ) )
135111, 114, 5, 118, 1, 115, 134quad2 22193 . 2  |-  ( ph  ->  ( ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) )  =  0  <-> 
( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) ) ) )
1364, 35recidi 10058 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
137136oveq2i 6101 . . . . 5  |-  ( (
-u S  +  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  +  I )  /  1 )
1385negcld 9702 . . . . . . 7  |-  ( ph  -> 
-u S  e.  CC )
139138, 115addcld 9401 . . . . . 6  |-  ( ph  ->  ( -u S  +  I )  e.  CC )
140139div1d 10095 . . . . 5  |-  ( ph  ->  ( ( -u S  +  I )  /  1
)  =  ( -u S  +  I )
)
141137, 140syl5eq 2485 . . . 4  |-  ( ph  ->  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  +  I )
)
142141eqeq2d 2452 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  +  I ) ) )
143136oveq2i 6101 . . . . 5  |-  ( (
-u S  -  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  -  I )  /  1 )
144138, 115subcld 9715 . . . . . 6  |-  ( ph  ->  ( -u S  -  I )  e.  CC )
145144div1d 10095 . . . . 5  |-  ( ph  ->  ( ( -u S  -  I )  /  1
)  =  ( -u S  -  I )
)
146143, 145syl5eq 2485 . . . 4  |-  ( ph  ->  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  -  I )
)
147146eqeq2d 2452 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  -  I ) ) )
148142, 147orbi12d 704 . 2  |-  ( ph  ->  ( ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) )  <->  ( X  =  ( -u S  +  I )  \/  X  =  ( -u S  -  I ) ) ) )
149108, 135, 1483bitrd 279 1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604  (class class class)co 6090   CCcc 9276   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   4c4 10369   ^cexp 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-n0 10576  df-z 10643  df-uz 10858  df-seq 11803  df-exp 11862
This theorem is referenced by:  dquart  22207
  Copyright terms: Public domain W3C validator