MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwdOLD Structured version   Unicode version

Theorem dprdwdOLD 17246
Description: The property of being a finitely supported function in the family  S. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of dprdwd 17239 as of 11-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
dprdffOLD.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
dprdffOLD.1  |-  ( ph  ->  G dom DProd  S )
dprdffOLD.2  |-  ( ph  ->  dom  S  =  I )
dprdwdOLD.3  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  ( S `  x
) )
dprdwdOLD.4  |-  ( ph  ->  ( `' ( x  e.  I  |->  A )
" ( _V  \  {  .0.  } ) )  e.  Fin )
Assertion
Ref Expression
dprdwdOLD  |-  ( ph  ->  ( x  e.  I  |->  A )  e.  W
)
Distinct variable groups:    A, h    x, h    x, G    h, i, I, x    .0. , h    ph, x    S, h, i, x
Allowed substitution hints:    ph( h, i)    A( x, i)    G( h, i)    W( x, h, i)    .0. ( x, i)

Proof of Theorem dprdwdOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dprdwdOLD.3 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  ( S `  x
) )
21ralrimiva 2868 . . 3  |-  ( ph  ->  A. x  e.  I  A  e.  ( S `  x ) )
3 eqid 2454 . . . 4  |-  ( x  e.  I  |->  A )  =  ( x  e.  I  |->  A )
43fnmpt 5689 . . 3  |-  ( A. x  e.  I  A  e.  ( S `  x
)  ->  ( x  e.  I  |->  A )  Fn  I )
52, 4syl 16 . 2  |-  ( ph  ->  ( x  e.  I  |->  A )  Fn  I
)
6 simpr 459 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
73fvmpt2 5939 . . . . . 6  |-  ( ( x  e.  I  /\  A  e.  ( S `  x ) )  -> 
( ( x  e.  I  |->  A ) `  x )  =  A )
86, 1, 7syl2anc 659 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  A ) `  x
)  =  A )
98, 1eqeltrd 2542 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  A ) `  x
)  e.  ( S `
 x ) )
109ralrimiva 2868 . . 3  |-  ( ph  ->  A. x  e.  I 
( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x ) )
11 nfv 1712 . . . 4  |-  F/ y ( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x )
12 nffvmpt1 5856 . . . . 5  |-  F/_ x
( ( x  e.  I  |->  A ) `  y )
1312nfel1 2632 . . . 4  |-  F/ x
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y )
14 fveq2 5848 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  I  |->  A ) `  x
)  =  ( ( x  e.  I  |->  A ) `  y ) )
15 fveq2 5848 . . . . 5  |-  ( x  =  y  ->  ( S `  x )  =  ( S `  y ) )
1614, 15eleq12d 2536 . . . 4  |-  ( x  =  y  ->  (
( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x )  <-> 
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y ) ) )
1711, 13, 16cbvral 3077 . . 3  |-  ( A. x  e.  I  (
( x  e.  I  |->  A ) `  x
)  e.  ( S `
 x )  <->  A. y  e.  I  ( (
x  e.  I  |->  A ) `  y )  e.  ( S `  y ) )
1810, 17sylib 196 . 2  |-  ( ph  ->  A. y  e.  I 
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y ) )
19 dprdwdOLD.4 . 2  |-  ( ph  ->  ( `' ( x  e.  I  |->  A )
" ( _V  \  {  .0.  } ) )  e.  Fin )
20 dprdffOLD.w . . 3  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
21 dprdffOLD.1 . . 3  |-  ( ph  ->  G dom DProd  S )
22 dprdffOLD.2 . . 3  |-  ( ph  ->  dom  S  =  I )
2320, 21, 22dprdwOLD 17245 . 2  |-  ( ph  ->  ( ( x  e.  I  |->  A )  e.  W  <->  ( ( x  e.  I  |->  A )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  A ) `  y
)  e.  ( S `
 y )  /\  ( `' ( x  e.  I  |->  A ) "
( _V  \  {  .0.  } ) )  e. 
Fin ) ) )
245, 18, 19, 23mpbir3and 1177 1  |-  ( ph  ->  ( x  e.  I  |->  A )  e.  W
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   {crab 2808   _Vcvv 3106    \ cdif 3458   {csn 4016   class class class wbr 4439    |-> cmpt 4497   `'ccnv 4987   dom cdm 4988   "cima 4991    Fn wfn 5565   ` cfv 5570   X_cixp 7462   Fincfn 7509   DProd cdprd 17219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-oprab 6274  df-mpt2 6275  df-ixp 7463  df-dprd 17221
This theorem is referenced by:  dprdfidOLD  17259  dprdfinvOLD  17261  dprdfaddOLD  17262  dmdprdsplitlemOLD  17280  dpjidclOLD  17309
  Copyright terms: Public domain W3C validator