MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Unicode version

Theorem dprdsplit 17415
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dprdsplit.s  |-  .(+)  =  (
LSSum `  G )
dprdsplit.1  |-  ( ph  ->  G dom DProd  S )
Assertion
Ref Expression
dprdsplit  |-  ( ph  ->  ( G DProd  S )  =  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )

Proof of Theorem dprdsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3  |-  ( ph  ->  G dom DProd  S )
2 dprdsplit.2 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 fdm 5717 . . . 4  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
42, 3syl 17 . . 3  |-  ( ph  ->  dom  S  =  I )
5 ssun1 3605 . . . . . . . 8  |-  C  C_  ( C  u.  D
)
6 dprdsplit.u . . . . . . . 8  |-  ( ph  ->  I  =  ( C  u.  D ) )
75, 6syl5sseqr 3490 . . . . . . 7  |-  ( ph  ->  C  C_  I )
81, 4, 7dprdres 17393 . . . . . 6  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
98simpld 457 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
10 dprdsubg 17389 . . . . 5  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
119, 10syl 17 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
12 ssun2 3606 . . . . . . . 8  |-  D  C_  ( C  u.  D
)
1312, 6syl5sseqr 3490 . . . . . . 7  |-  ( ph  ->  D  C_  I )
141, 4, 13dprdres 17393 . . . . . 6  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
1514simpld 457 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
16 dprdsubg 17389 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
1715, 16syl 17 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
18 dprdsplit.i . . . . . . 7  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
19 eqid 2402 . . . . . . 7  |-  (Cntz `  G )  =  (Cntz `  G )
20 eqid 2402 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
212, 18, 6, 19, 20dmdprdsplit 17414 . . . . . 6  |-  ( ph  ->  ( G dom DProd  S  <->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) )  /\  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  { ( 0g
`  G ) } ) ) )
221, 21mpbid 210 . . . . 5  |-  ( ph  ->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {
( 0g `  G
) } ) )
2322simp2d 1010 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) ) )
24 dprdsplit.s . . . . 5  |-  .(+)  =  (
LSSum `  G )
2524, 19lsmsubg 16996 . . . 4  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) ) )  ->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  e.  (SubGrp `  G ) )
2611, 17, 23, 25syl3anc 1230 . . 3  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
276eleq2d 2472 . . . . . 6  |-  ( ph  ->  ( x  e.  I  <->  x  e.  ( C  u.  D ) ) )
28 elun 3583 . . . . . 6  |-  ( x  e.  ( C  u.  D )  <->  ( x  e.  C  \/  x  e.  D ) )
2927, 28syl6bb 261 . . . . 5  |-  ( ph  ->  ( x  e.  I  <->  ( x  e.  C  \/  x  e.  D )
) )
3029biimpa 482 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
x  e.  C  \/  x  e.  D )
)
31 fvres 5862 . . . . . . . 8  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
3231adantl 464 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
339adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  C ) )
342, 7fssresd 5734 . . . . . . . . . 10  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
35 fdm 5717 . . . . . . . . . 10  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
3634, 35syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
3736adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  C )  =  C )
38 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  C )
3933, 37, 38dprdub 17390 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( G DProd  ( S  |`  C ) ) )
4032, 39eqsstr3d 3476 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( G DProd  ( S  |`  C ) ) )
4124lsmub1 16998 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( G DProd  ( S  |`  C )
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
4211, 17, 41syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
4342adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  C ) )  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
4440, 43sstrd 3451 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
45 fvres 5862 . . . . . . . 8  |-  ( x  e.  D  ->  (
( S  |`  D ) `
 x )  =  ( S `  x
) )
4645adantl 464 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( S  |`  D ) `
 x )  =  ( S `  x
) )
4715adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  G dom DProd  ( S  |`  D ) )
482, 13fssresd 5734 . . . . . . . . . 10  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
49 fdm 5717 . . . . . . . . . 10  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
5048, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
5150adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  dom  ( S  |`  D )  =  D )
52 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  D )
5347, 51, 52dprdub 17390 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( S  |`  D ) `
 x )  C_  ( G DProd  ( S  |`  D ) ) )
5446, 53eqsstr3d 3476 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( S `  x )  C_  ( G DProd  ( S  |`  D ) ) )
5524lsmub2 16999 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( G DProd  ( S  |`  D )
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
5611, 17, 55syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
5756adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( G DProd  ( S  |`  D ) )  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
5854, 57sstrd 3451 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
5944, 58jaodan 786 . . . 4  |-  ( (
ph  /\  ( x  e.  C  \/  x  e.  D ) )  -> 
( S `  x
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
6030, 59syldan 468 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
611, 4, 26, 60dprdlub 17391 . 2  |-  ( ph  ->  ( G DProd  S ) 
C_  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
628simprd 461 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) )
6314simprd 461 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) )
64 dprdsubg 17389 . . . . 5  |-  ( G dom DProd  S  ->  ( G DProd 
S )  e.  (SubGrp `  G ) )
651, 64syl 17 . . . 4  |-  ( ph  ->  ( G DProd  S )  e.  (SubGrp `  G
) )
6624lsmlub 17005 . . . 4  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( G DProd  S )  e.  (SubGrp `  G
) )  ->  (
( ( G DProd  ( S  |`  C ) ) 
C_  ( G DProd  S
)  /\  ( G DProd  ( S  |`  D )
)  C_  ( G DProd  S ) )  <->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  C_  ( G DProd  S ) ) )
6711, 17, 65, 66syl3anc 1230 . . 3  |-  ( ph  ->  ( ( ( G DProd 
( S  |`  C ) )  C_  ( G DProd  S )  /\  ( G DProd 
( S  |`  D ) )  C_  ( G DProd  S ) )  <->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  C_  ( G DProd  S ) ) )
6862, 63, 67mpbi2and 922 . 2  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) )  C_  ( G DProd  S ) )
6961, 68eqssd 3458 1  |-  ( ph  ->  ( G DProd  S )  =  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    u. cun 3411    i^i cin 3412    C_ wss 3413   (/)c0 3737   {csn 3971   class class class wbr 4394   dom cdm 4822    |` cres 4824   -->wf 5564   ` cfv 5568  (class class class)co 6277   0gc0g 15052  SubGrpcsubg 16517  Cntzccntz 16675   LSSumclsm 16976   DProd cdprd 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-tpos 6957  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-seq 12150  df-hash 12451  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-0g 15054  df-gsum 15055  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-mhm 16288  df-submnd 16289  df-grp 16379  df-minusg 16380  df-sbg 16381  df-mulg 16382  df-subg 16520  df-ghm 16587  df-gim 16629  df-cntz 16677  df-oppg 16703  df-lsm 16978  df-cmn 17122  df-dprd 17344
This theorem is referenced by:  dprdpr  17417  dpjlsm  17421  ablfac1eulem  17441  ablfac1eu  17442  pgpfaclem1  17450
  Copyright terms: Public domain W3C validator