MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Unicode version

Theorem dprdsplit 16562
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dprdsplit.s  |-  .(+)  =  (
LSSum `  G )
dprdsplit.1  |-  ( ph  ->  G dom DProd  S )
Assertion
Ref Expression
dprdsplit  |-  ( ph  ->  ( G DProd  S )  =  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )

Proof of Theorem dprdsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3  |-  ( ph  ->  G dom DProd  S )
2 dprdsplit.2 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 fdm 5578 . . . 4  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
42, 3syl 16 . . 3  |-  ( ph  ->  dom  S  =  I )
5 ssun1 3534 . . . . . . . 8  |-  C  C_  ( C  u.  D
)
6 dprdsplit.u . . . . . . . 8  |-  ( ph  ->  I  =  ( C  u.  D ) )
75, 6syl5sseqr 3420 . . . . . . 7  |-  ( ph  ->  C  C_  I )
81, 4, 7dprdres 16540 . . . . . 6  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
98simpld 459 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
10 dprdsubg 16536 . . . . 5  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
119, 10syl 16 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
12 ssun2 3535 . . . . . . . 8  |-  D  C_  ( C  u.  D
)
1312, 6syl5sseqr 3420 . . . . . . 7  |-  ( ph  ->  D  C_  I )
141, 4, 13dprdres 16540 . . . . . 6  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
1514simpld 459 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
16 dprdsubg 16536 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
1715, 16syl 16 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
18 dprdsplit.i . . . . . . 7  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
19 eqid 2443 . . . . . . 7  |-  (Cntz `  G )  =  (Cntz `  G )
20 eqid 2443 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
212, 18, 6, 19, 20dmdprdsplit 16561 . . . . . 6  |-  ( ph  ->  ( G dom DProd  S  <->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) )  /\  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  { ( 0g
`  G ) } ) ) )
221, 21mpbid 210 . . . . 5  |-  ( ph  ->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {
( 0g `  G
) } ) )
2322simp2d 1001 . . . 4  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) ) )
24 dprdsplit.s . . . . 5  |-  .(+)  =  (
LSSum `  G )
2524, 19lsmsubg 16168 . . . 4  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  C ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  D ) ) ) )  ->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  e.  (SubGrp `  G ) )
2611, 17, 23, 25syl3anc 1218 . . 3  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
276eleq2d 2510 . . . . . 6  |-  ( ph  ->  ( x  e.  I  <->  x  e.  ( C  u.  D ) ) )
28 elun 3512 . . . . . 6  |-  ( x  e.  ( C  u.  D )  <->  ( x  e.  C  \/  x  e.  D ) )
2927, 28syl6bb 261 . . . . 5  |-  ( ph  ->  ( x  e.  I  <->  ( x  e.  C  \/  x  e.  D )
) )
3029biimpa 484 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
x  e.  C  \/  x  e.  D )
)
31 fvres 5719 . . . . . . . 8  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
3231adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
339adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  C ) )
34 fssres 5593 . . . . . . . . . . 11  |-  ( ( S : I --> (SubGrp `  G )  /\  C  C_  I )  ->  ( S  |`  C ) : C --> (SubGrp `  G )
)
352, 7, 34syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
36 fdm 5578 . . . . . . . . . 10  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
3735, 36syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
3837adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  C )  =  C )
39 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  C )
4033, 38, 39dprdub 16537 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( G DProd  ( S  |`  C ) ) )
4132, 40eqsstr3d 3406 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( G DProd  ( S  |`  C ) ) )
4224lsmub1 16170 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( G DProd  ( S  |`  C )
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
4311, 17, 42syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
4443adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  C ) )  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
4541, 44sstrd 3381 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
46 fvres 5719 . . . . . . . 8  |-  ( x  e.  D  ->  (
( S  |`  D ) `
 x )  =  ( S `  x
) )
4746adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( S  |`  D ) `
 x )  =  ( S `  x
) )
4815adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  G dom DProd  ( S  |`  D ) )
49 fssres 5593 . . . . . . . . . . 11  |-  ( ( S : I --> (SubGrp `  G )  /\  D  C_  I )  ->  ( S  |`  D ) : D --> (SubGrp `  G )
)
502, 13, 49syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
51 fdm 5578 . . . . . . . . . 10  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
5250, 51syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
5352adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  dom  ( S  |`  D )  =  D )
54 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  D )
5548, 53, 54dprdub 16537 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( S  |`  D ) `
 x )  C_  ( G DProd  ( S  |`  D ) ) )
5647, 55eqsstr3d 3406 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( S `  x )  C_  ( G DProd  ( S  |`  D ) ) )
5724lsmub2 16171 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( G DProd  ( S  |`  D )
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
5811, 17, 57syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
5958adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( G DProd  ( S  |`  D ) )  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
6056, 59sstrd 3381 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
6145, 60jaodan 783 . . . 4  |-  ( (
ph  /\  ( x  e.  C  \/  x  e.  D ) )  -> 
( S `  x
)  C_  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
6230, 61syldan 470 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  C_  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) ) )
631, 4, 26, 62dprdlub 16538 . 2  |-  ( ph  ->  ( G DProd  S ) 
C_  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
648simprd 463 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) )
6514simprd 463 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) )
66 dprdsubg 16536 . . . . 5  |-  ( G dom DProd  S  ->  ( G DProd 
S )  e.  (SubGrp `  G ) )
671, 66syl 16 . . . 4  |-  ( ph  ->  ( G DProd  S )  e.  (SubGrp `  G
) )
6824lsmlub 16177 . . . 4  |-  ( ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( G DProd  S )  e.  (SubGrp `  G
) )  ->  (
( ( G DProd  ( S  |`  C ) ) 
C_  ( G DProd  S
)  /\  ( G DProd  ( S  |`  D )
)  C_  ( G DProd  S ) )  <->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  C_  ( G DProd  S ) ) )
6911, 17, 67, 68syl3anc 1218 . . 3  |-  ( ph  ->  ( ( ( G DProd 
( S  |`  C ) )  C_  ( G DProd  S )  /\  ( G DProd 
( S  |`  D ) )  C_  ( G DProd  S ) )  <->  ( ( G DProd  ( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) )  C_  ( G DProd  S ) ) )
7064, 65, 69mpbi2and 912 . 2  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) ) 
.(+)  ( G DProd  ( S  |`  D ) ) )  C_  ( G DProd  S ) )
7163, 70eqssd 3388 1  |-  ( ph  ->  ( G DProd  S )  =  ( ( G DProd 
( S  |`  C ) )  .(+)  ( G DProd  ( S  |`  D )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    u. cun 3341    i^i cin 3342    C_ wss 3343   (/)c0 3652   {csn 3892   class class class wbr 4307   dom cdm 4855    |` cres 4857   -->wf 5429   ` cfv 5433  (class class class)co 6106   0gc0g 14393  SubGrpcsubg 15690  Cntzccntz 15848   LSSumclsm 16148   DProd cdprd 16490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-of 6335  df-om 6492  df-1st 6592  df-2nd 6593  df-supp 6706  df-tpos 6760  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-map 7231  df-ixp 7279  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-fsupp 7636  df-oi 7739  df-card 8124  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-n0 10595  df-z 10662  df-uz 10877  df-fz 11453  df-fzo 11564  df-seq 11822  df-hash 12119  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-0g 14395  df-gsum 14396  df-mre 14539  df-mrc 14540  df-acs 14542  df-mnd 15430  df-mhm 15479  df-submnd 15480  df-grp 15560  df-minusg 15561  df-sbg 15562  df-mulg 15563  df-subg 15693  df-ghm 15760  df-gim 15802  df-cntz 15850  df-oppg 15876  df-lsm 16150  df-cmn 16294  df-dprd 16492
This theorem is referenced by:  dprdpr  16564  dpjlsm  16568  ablfac1eulem  16588  ablfac1eu  16589  pgpfaclem1  16597
  Copyright terms: Public domain W3C validator