MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Structured version   Unicode version

Theorem dprdsn 16951
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )

Proof of Theorem dprdsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2441 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2441 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 subgrcl 16075 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54adantl 466 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G  e.  Grp )
6 snex 4674 . . . 4  |-  { A }  e.  _V
76a1i 11 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { A }  e.  _V )
8 f1osng 5840 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } -1-1-onto-> { S } )
9 f1of 5802 . . . . 5  |-  ( {
<. A ,  S >. } : { A } -1-1-onto-> { S }  ->  { <. A ,  S >. } : { A } --> { S } )
108, 9syl 16 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> { S } )
11 simpr 461 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  S  e.  (SubGrp `  G )
)
1211snssd 4156 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { S }  C_  (SubGrp `  G
) )
1310, 12fssd 5726 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> (SubGrp `  G ) )
14 simpr1 1001 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  e.  { A } )
15 elsni 4035 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
1614, 15syl 16 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  A )
17 simpr2 1002 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  e.  { A } )
18 elsni 4035 . . . . . 6  |-  ( y  e.  { A }  ->  y  =  A )
1917, 18syl 16 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  =  A )
2016, 19eqtr4d 2485 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  y )
21 simpr3 1003 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =/=  y )
2220, 21pm2.21ddne 2755 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( { <. A ,  S >. } `  x
)  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y ) ) )
235adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  G  e.  Grp )
24 eqid 2441 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
2524subgacs 16105 . . . . . . . 8  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
26 acsmre 14921 . . . . . . . 8  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
2723, 25, 263syl 20 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
2815adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  x  =  A )
2928sneqd 4022 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { x }  =  { A } )
3029difeq2d 3604 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  ( { A }  \  { A } ) )
31 difid 3878 . . . . . . . . . . . . 13  |-  ( { A }  \  { A } )  =  (/)
3230, 31syl6eq 2498 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  (/) )
3332imaeq2d 5323 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  ( { <. A ,  S >. } " (/) ) )
34 ima0 5338 . . . . . . . . . . 11  |-  ( {
<. A ,  S >. }
" (/) )  =  (/)
3533, 34syl6eq 2498 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
3635unieqd 4240 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  U. (/) )
37 uni0 4257 . . . . . . . . 9  |-  U. (/)  =  (/)
3836, 37syl6eq 2498 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
39 0ss 3796 . . . . . . . . 9  |-  (/)  C_  { ( 0g `  G ) }
4039a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (/)  C_  { ( 0g `  G ) } )
4138, 40eqsstrd 3520 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) } )
4220subg 16095 . . . . . . . 8  |-  ( G  e.  Grp  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
4323, 42syl 16 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
443mrcsscl 14889 . . . . . . 7  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) }  /\  { ( 0g
`  G ) }  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
4527, 41, 43, 44syl3anc 1227 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
462subg0cl 16078 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
4746ad2antlr 726 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  S )
4815fveq2d 5856 . . . . . . . . 9  |-  ( x  e.  { A }  ->  ( { <. A ,  S >. } `  x
)  =  ( {
<. A ,  S >. } `
 A ) )
49 fvsng 6086 . . . . . . . . 9  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( { <. A ,  S >. } `  A )  =  S )
5048, 49sylan9eqr 2504 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } `  x )  =  S )
5147, 50eleqtrrd 2532 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  ( { <. A ,  S >. } `  x
) )
5251snssd 4156 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  C_  ( { <. A ,  S >. } `
 x ) )
5345, 52sstrd 3496 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x ) )
54 dfss1 3685 . . . . 5  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x )  <->  ( ( { <. A ,  S >. } `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5553, 54sylib 196 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5655, 45eqsstrd 3520 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) ) 
C_  { ( 0g
`  G ) } )
571, 2, 3, 5, 7, 13, 22, 56dmdprdd 16899 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G dom DProd  { <. A ,  S >. } )
583dprdspan 16942 . . . 4  |-  ( G dom DProd  { <. A ,  S >. }  ->  ( G DProd  {
<. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G )
) `  U. ran  { <. A ,  S >. } ) )
5957, 58syl 16 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } ) )
60 rnsnopg 5473 . . . . . . . 8  |-  ( A  e.  V  ->  ran  {
<. A ,  S >. }  =  { S }
)
6160adantr 465 . . . . . . 7  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ran  {
<. A ,  S >. }  =  { S }
)
6261unieqd 4240 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  U. { S } )
63 unisng 4246 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  U. { S }  =  S )
6463adantl 466 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. { S }  =  S
)
6562, 64eqtrd 2482 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  S )
6665fveq2d 5856 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  S
) )
675, 25, 263syl 20 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
683mrcid 14882 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
6967, 68sylancom 667 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
7066, 69eqtrd 2482 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  S )
7159, 70eqtrd 2482 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  S )
7257, 71jca 532 1  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   _Vcvv 3093    \ cdif 3455    i^i cin 3457    C_ wss 3458   (/)c0 3767   {csn 4010   <.cop 4016   U.cuni 4230   class class class wbr 4433   dom cdm 4985   ran crn 4986   "cima 4988   -->wf 5570   -1-1-onto->wf1o 5573   ` cfv 5574  (class class class)co 6277   Basecbs 14504   0gc0g 14709  Moorecmre 14851  mrClscmrc 14852  ACScacs 14854   Grpcgrp 15922  SubGrpcsubg 16064  Cntzccntz 16222   DProd cdprd 16893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-tpos 6953  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-oi 7933  df-card 8318  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11086  df-fz 11677  df-fzo 11799  df-seq 12082  df-hash 12380  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-0g 14711  df-gsum 14712  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-mhm 15835  df-submnd 15836  df-grp 15926  df-minusg 15927  df-sbg 15928  df-mulg 15929  df-subg 16067  df-ghm 16134  df-gim 16176  df-cntz 16224  df-oppg 16250  df-cmn 16669  df-dprd 16895
This theorem is referenced by:  dprd2da  16959  dmdprdpr  16966  dprdpr  16967  dpjlem  16968  pgpfaclem1  17000
  Copyright terms: Public domain W3C validator