MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfid Unicode version

Theorem dprdfid 15530
Description: The zero function is the only function that sums two zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
dprdfid.3  |-  ( ph  ->  X  e.  I )
dprdfid.4  |-  ( ph  ->  A  e.  ( S `
 X ) )
dprdfid.f  |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
Assertion
Ref Expression
dprdfid  |-  ( ph  ->  ( F  e.  W  /\  ( G  gsumg  F )  =  A ) )
Distinct variable groups:    h, n, A    h, F    h, i, G, n    h, I, i, n    ph, n    .0. , h, n    S, h, i, n   
h, X, n
Allowed substitution hints:    ph( h, i)    A( i)    F( i, n)    W( h, i, n)    X( i)    .0. ( i)

Proof of Theorem dprdfid
StepHypRef Expression
1 dprdfid.f . . 3  |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
2 eldprdi.w . . . 4  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
3 eldprdi.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
4 eldprdi.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
5 dprdfid.4 . . . . . . 7  |-  ( ph  ->  A  e.  ( S `
 X ) )
65ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  A  e.  ( S `  X
) )
7 simpr 448 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  n  =  X )
87fveq2d 5691 . . . . . 6  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  ( S `  n )  =  ( S `  X ) )
96, 8eleqtrrd 2481 . . . . 5  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  A  e.  ( S `  n
) )
103, 4dprdf2 15520 . . . . . . . 8  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
1110ffvelrnda 5829 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( S `  n )  e.  (SubGrp `  G )
)
12 eldprdi.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
1312subg0cl 14907 . . . . . . 7  |-  ( ( S `  n )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  n ) )
1411, 13syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  .0.  e.  ( S `  n
) )
1514adantr 452 . . . . 5  |-  ( ( ( ph  /\  n  e.  I )  /\  -.  n  =  X )  ->  .0.  e.  ( S `
 n ) )
169, 15ifclda 3726 . . . 4  |-  ( (
ph  /\  n  e.  I )  ->  if ( n  =  X ,  A ,  .0.  )  e.  ( S `  n
) )
17 snfi 7146 . . . . 5  |-  { X }  e.  Fin
18 eldifsni 3888 . . . . . . . 8  |-  ( n  e.  ( I  \  { X } )  ->  n  =/=  X )
1918adantl 453 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( I  \  { X } ) )  ->  n  =/=  X )
20 ifnefalse 3707 . . . . . . 7  |-  ( n  =/=  X  ->  if ( n  =  X ,  A ,  .0.  )  =  .0.  )
2119, 20syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  ( I  \  { X } ) )  ->  if ( n  =  X ,  A ,  .0.  )  =  .0.  )
2221suppss2 6259 . . . . 5  |-  ( ph  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  { X } )
23 ssfi 7288 . . . . 5  |-  ( ( { X }  e.  Fin  /\  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) " ( _V  \  {  .0.  }
) )  C_  { X } )  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
2417, 22, 23sylancr 645 . . . 4  |-  ( ph  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
252, 3, 4, 16, 24dprdwd 15524 . . 3  |-  ( ph  ->  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )  e.  W
)
261, 25syl5eqel 2488 . 2  |-  ( ph  ->  F  e.  W )
27 eqid 2404 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
28 dprdgrp 15518 . . . . 5  |-  ( G dom DProd  S  ->  G  e. 
Grp )
29 grpmnd 14772 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Mnd )
303, 28, 293syl 19 . . . 4  |-  ( ph  ->  G  e.  Mnd )
31 reldmdprd 15513 . . . . . . 7  |-  Rel  dom DProd
3231brrelex2i 4878 . . . . . 6  |-  ( G dom DProd  S  ->  S  e. 
_V )
33 dmexg 5089 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
343, 32, 333syl 19 . . . . 5  |-  ( ph  ->  dom  S  e.  _V )
354, 34eqeltrrd 2479 . . . 4  |-  ( ph  ->  I  e.  _V )
36 dprdfid.3 . . . 4  |-  ( ph  ->  X  e.  I )
372, 3, 4, 26, 27dprdff 15525 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
381cnveqi 5006 . . . . . 6  |-  `' F  =  `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
3938imaeq1i 5159 . . . . 5  |-  ( `' F " ( _V 
\  {  .0.  }
) )  =  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) "
( _V  \  {  .0.  } ) )
4039, 22syl5eqss 3352 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
4127, 12, 30, 35, 36, 37, 40gsumpt 15500 . . 3  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
42 iftrue 3705 . . . . 5  |-  ( n  =  X  ->  if ( n  =  X ,  A ,  .0.  )  =  A )
4342, 1fvmptg 5763 . . . 4  |-  ( ( X  e.  I  /\  A  e.  ( S `  X ) )  -> 
( F `  X
)  =  A )
4436, 5, 43syl2anc 643 . . 3  |-  ( ph  ->  ( F `  X
)  =  A )
4541, 44eqtrd 2436 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  A )
4626, 45jca 519 1  |-  ( ph  ->  ( F  e.  W  /\  ( G  gsumg  F )  =  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   {crab 2670   _Vcvv 2916    \ cdif 3277    C_ wss 3280   ifcif 3699   {csn 3774   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836   dom cdm 4837   "cima 4840   ` cfv 5413  (class class class)co 6040   X_cixp 7022   Fincfn 7068   Basecbs 13424   0gc0g 13678    gsumg cgsu 13679   Mndcmnd 14639   Grpcgrp 14640  SubGrpcsubg 14893   DProd cdprd 15509
This theorem is referenced by:  dprdfeq0  15535  dprdub  15538  dpjrid  15575
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-grp 14767  df-mulg 14770  df-subg 14896  df-cntz 15071  df-cmn 15369  df-dprd 15511
  Copyright terms: Public domain W3C validator