MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdffsupp Structured version   Unicode version

Theorem dprdffsupp 17582
Description: A finitely supported function in  S is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
dprdff.1  |-  ( ph  ->  G dom DProd  S )
dprdff.2  |-  ( ph  ->  dom  S  =  I )
dprdff.3  |-  ( ph  ->  F  e.  W )
Assertion
Ref Expression
dprdffsupp  |-  ( ph  ->  F finSupp  .0.  )
Distinct variable groups:    h, F    h, i, I    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    G( h, i)    W( h, i)    .0. ( i)

Proof of Theorem dprdffsupp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . 3  |-  ( ph  ->  F  e.  W )
2 dprdff.w . . . 4  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
3 dprdff.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
4 dprdff.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
52, 3, 4dprdw 17577 . . 3  |-  ( ph  ->  ( F  e.  W  <->  ( F  Fn  I  /\  A. x  e.  I  ( F `  x )  e.  ( S `  x )  /\  F finSupp  .0.  ) ) )
61, 5mpbid 213 . 2  |-  ( ph  ->  ( F  Fn  I  /\  A. x  e.  I 
( F `  x
)  e.  ( S `
 x )  /\  F finSupp  .0.  ) )
76simp3d 1019 1  |-  ( ph  ->  F finSupp  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   {crab 2786   class class class wbr 4426   dom cdm 4854    Fn wfn 5596   ` cfv 5601   X_cixp 7530   finSupp cfsupp 7889   DProd cdprd 17560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-oprab 6309  df-mpt2 6310  df-ixp 7531  df-dprd 17562
This theorem is referenced by:  dprdssv  17584  dprdfinv  17587  dprdfadd  17588  dprdfeq0  17590  dprdlub  17594  dmdprdsplitlem  17605  dpjidcl  17626
  Copyright terms: Public domain W3C validator