MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdff Structured version   Unicode version

Theorem dprdff 17366
Description: A finitely supported function in  S is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
dprdff.1  |-  ( ph  ->  G dom DProd  S )
dprdff.2  |-  ( ph  ->  dom  S  =  I )
dprdff.3  |-  ( ph  ->  F  e.  W )
dprdff.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
dprdff  |-  ( ph  ->  F : I --> B )
Distinct variable groups:    h, F    h, i, I    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    B( h, i)    F( i)    G( h, i)    W( h, i)    .0. ( i)

Proof of Theorem dprdff
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4  |-  ( ph  ->  F  e.  W )
2 dprdff.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
3 dprdff.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
4 dprdff.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
52, 3, 4dprdw 17363 . . . 4  |-  ( ph  ->  ( F  e.  W  <->  ( F  Fn  I  /\  A. x  e.  I  ( F `  x )  e.  ( S `  x )  /\  F finSupp  .0.  ) ) )
61, 5mpbid 210 . . 3  |-  ( ph  ->  ( F  Fn  I  /\  A. x  e.  I 
( F `  x
)  e.  ( S `
 x )  /\  F finSupp  .0.  ) )
76simp1d 1009 . 2  |-  ( ph  ->  F  Fn  I )
86simp2d 1010 . . 3  |-  ( ph  ->  A. x  e.  I 
( F `  x
)  e.  ( S `
 x ) )
93, 4dprdf2 17360 . . . . . . 7  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
109ffvelrnda 6009 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
11 dprdff.b . . . . . . 7  |-  B  =  ( Base `  G
)
1211subgss 16526 . . . . . 6  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( S `  x )  C_  B
)
1310, 12syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  C_  B )
1413sseld 3441 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( F `  x
)  e.  ( S `
 x )  -> 
( F `  x
)  e.  B ) )
1514ralimdva 2812 . . 3  |-  ( ph  ->  ( A. x  e.  I  ( F `  x )  e.  ( S `  x )  ->  A. x  e.  I 
( F `  x
)  e.  B ) )
168, 15mpd 15 . 2  |-  ( ph  ->  A. x  e.  I 
( F `  x
)  e.  B )
17 ffnfv 6036 . 2  |-  ( F : I --> B  <->  ( F  Fn  I  /\  A. x  e.  I  ( F `  x )  e.  B
) )
187, 16, 17sylanbrc 662 1  |-  ( ph  ->  F : I --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754   {crab 2758    C_ wss 3414   class class class wbr 4395   dom cdm 4823    Fn wfn 5564   -->wf 5565   ` cfv 5569   X_cixp 7507   finSupp cfsupp 7863   Basecbs 14841  SubGrpcsubg 16519   DProd cdprd 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-ixp 7508  df-subg 16522  df-dprd 17346
This theorem is referenced by:  dprdfcntz  17369  dprdssv  17376  dprdfid  17377  dprdfinv  17379  dprdfadd  17380  dprdfsub  17381  dprdfeq0  17382  dprdf11  17383  dprdlub  17393  dmdprdsplitlem  17404  dprddisj2  17407  dpjidcl  17427
  Copyright terms: Public domain W3C validator