MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0OLD Structured version   Unicode version

Theorem dprdfeq0OLD 16519
Description: The zero function is the only function that sums two zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) Obsolete version of dprdfeq0 16512 as of 14-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
eldprdiOLD.0  |-  .0.  =  ( 0g `  G )
eldprdiOLD.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdiOLD.1  |-  ( ph  ->  G dom DProd  S )
eldprdiOLD.2  |-  ( ph  ->  dom  S  =  I )
eldprdiOLD.3  |-  ( ph  ->  F  e.  W )
Assertion
Ref Expression
dprdfeq0OLD  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Distinct variable groups:    x, h, F    h, i, G, x   
h, I, i, x    ph, x    .0. , h, x    S, h, i, x
Allowed substitution hints:    ph( h, i)    F( i)    W( x, h, i)    .0. ( i)

Proof of Theorem dprdfeq0OLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldprdiOLD.w . . . . . . 7  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 eldprdiOLD.1 . . . . . . 7  |-  ( ph  ->  G dom DProd  S )
3 eldprdiOLD.2 . . . . . . 7  |-  ( ph  ->  dom  S  =  I )
4 eldprdiOLD.3 . . . . . . 7  |-  ( ph  ->  F  e.  W )
5 eqid 2443 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdffOLD 16502 . . . . . 6  |-  ( ph  ->  F : I --> ( Base `  G ) )
76feqmptd 5744 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
87adantr 465 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
91, 2, 3, 4dprdfclOLD 16503 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
109adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
11 eldprdiOLD.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
122ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G dom DProd  S )
133ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  dom  S  =  I )
14 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  x  e.  I )
15 eqid 2443 . . . . . . . . . . . . . 14  |-  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)
1611, 1, 12, 13, 14, 10, 15dprdfidOLD 16514 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  e.  W  /\  ( G 
gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) ) )
1716simpld 459 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  e.  W
)
184ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  e.  W )
19 eqid 2443 . . . . . . . . . . . 12  |-  ( -g `  G )  =  (
-g `  G )
2011, 1, 12, 13, 17, 18, 19dprdfsubOLD 16518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F )  e.  W  /\  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) ) )
2120simprd 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) )
22 reldmdprd 16479 . . . . . . . . . . . . . . . 16  |-  Rel  dom DProd
2322brrelex2i 4880 . . . . . . . . . . . . . . 15  |-  ( G dom DProd  S  ->  S  e. 
_V )
24 dmexg 6509 . . . . . . . . . . . . . . 15  |-  ( S  e.  _V  ->  dom  S  e.  _V )
252, 23, 243syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  S  e.  _V )
263, 25eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  _V )
2726ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  I  e.  _V )
28 fvex 5701 . . . . . . . . . . . . . 14  |-  ( F `
 x )  e. 
_V
29 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  e. 
_V
3011, 29eqeltri 2513 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
3128, 30ifex 3858 . . . . . . . . . . . . 13  |-  if ( y  =  x ,  ( F `  x
) ,  .0.  )  e.  _V
3231a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  if ( y  =  x ,  ( F `  x ) ,  .0.  )  e.  _V )
33 fvex 5701 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
3433a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  _V )
35 eqidd 2444 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) ) )
366ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F : I --> ( Base `  G ) )
3736feqmptd 5744 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  =  ( y  e.  I  |->  ( F `  y ) ) )
3827, 32, 34, 35, 37offval2 6336 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  oF ( -g `  G
) F )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )
3938oveq2d 6107 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( G 
gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) ) )
4016simprd 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) )
41 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  F )  =  .0.  )
4240, 41oveq12d 6109 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( ( F `  x ) ( -g `  G
)  .0.  ) )
43 dprdgrp 16489 . . . . . . . . . . . . 13  |-  ( G dom DProd  S  ->  G  e. 
Grp )
4412, 43syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Grp )
4536, 14ffvelrnd 5844 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
465, 11, 19grpsubid1 15611 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4744, 45, 46syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4842, 47eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( F `
 x ) )
4921, 39, 483eqtr3d 2483 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  =  ( F `  x ) )
50 eqid 2443 . . . . . . . . . 10  |-  (Cntz `  G )  =  (Cntz `  G )
51 grpmnd 15550 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  G  e.  Mnd )
522, 43, 513syl 20 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
5352ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Mnd )
545subgacs 15716 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
55 acsmre 14590 . . . . . . . . . . . . 13  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
5644, 54, 553syl 20 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
57 imassrn 5180 . . . . . . . . . . . . . 14  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
582, 3dprdf2 16491 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
5958ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S : I --> (SubGrp `  G ) )
60 frn 5565 . . . . . . . . . . . . . . . 16  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
6159, 60syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
62 mresspw 14530 . . . . . . . . . . . . . . . 16  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6356, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6461, 63sstrd 3366 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  ~P ( Base `  G
) )
6557, 64syl5ss 3367 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
66 sspwuni 4256 . . . . . . . . . . . . 13  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
6765, 66sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
68 eqid 2443 . . . . . . . . . . . . 13  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6968mrccl 14549 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
7056, 67, 69syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )
)
71 subgsubm 15703 . . . . . . . . . . 11  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubMnd `  G
) )
7270, 71syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubMnd `  G )
)
73 oveq1 6098 . . . . . . . . . . . . 13  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( F `  x ) ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
7473eleq1d 2509 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( ( F `
 x ) (
-g `  G )
( F `  y
) )  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
75 oveq1 6098 . . . . . . . . . . . . 13  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
7675eleq1d 2509 . . . . . . . . . . . 12  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( (  .0.  ( -g `  G ) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
77 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  y  =  x )
7877fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  ( F `  y )  =  ( F `  x ) )
7978oveq2d 6107 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  =  ( ( F `  x ) ( -g `  G ) ( F `
 x ) ) )
805, 11, 19grpsubid 15610 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
8144, 45, 80syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
8211subg0cl 15689 . . . . . . . . . . . . . . . 16  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
8370, 82syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8481, 83eqeltrd 2517 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8584ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8679, 85eqeltrd 2517 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8770ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
) )
8887, 82syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
8956, 68, 67mrcssidd 14563 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
9089ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  U. ( S "
( I  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
911, 12, 13, 18dprdfclOLD 16503 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  ( S `  y
) )
9291adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( S `
 y ) )
93 ffn 5559 . . . . . . . . . . . . . . . . . 18  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
9459, 93syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S  Fn  I )
9594ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  S  Fn  I )
96 difssd 3484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( I  \  {
x } )  C_  I )
97 df-ne 2608 . . . . . . . . . . . . . . . . . 18  |-  ( y  =/=  x  <->  -.  y  =  x )
98 eldifsn 4000 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
9998biimpri 206 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  I  /\  y  =/=  x )  -> 
y  e.  ( I 
\  { x }
) )
10097, 99sylan2br 476 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  I  /\  -.  y  =  x
)  ->  y  e.  ( I  \  { x } ) )
101100adantll 713 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  y  e.  ( I 
\  { x }
) )
102 fnfvima 5955 . . . . . . . . . . . . . . . 16  |-  ( ( S  Fn  I  /\  ( I  \  { x } )  C_  I  /\  y  e.  (
I  \  { x } ) )  -> 
( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
10395, 96, 101, 102syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
104 elunii 4096 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  y
)  e.  ( S `
 y )  /\  ( S `  y )  e.  ( S "
( I  \  {
x } ) ) )  ->  ( F `  y )  e.  U. ( S " ( I 
\  { x }
) ) )
10592, 103, 104syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  U. ( S " ( I  \  { x } ) ) )
10690, 105sseldd 3357 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
10719subgsubcl 15692 . . . . . . . . . . . . 13  |-  ( ( ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  .0.  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  /\  ( F `  y )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
10887, 88, 106, 107syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  (  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
10974, 76, 86, 108ifbothda 3824 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
110 eqid 2443 . . . . . . . . . . 11  |-  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) ) )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
111109, 110fmptd 5867 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) ) : I --> ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
11220simpld 459 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  oF ( -g `  G
) F )  e.  W )
11338, 112eqeltrrd 2518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) )  e.  W )
1141, 12, 13, 113, 50dprdfcntzOLD 16505 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) )  C_  ( (Cntz `  G ) `  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) ) ) )
1151, 12, 13, 113dprdffiOLD 16504 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( `' ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
11611, 50, 53, 27, 72, 111, 114, 115gsumzsubmclOLD 16403 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
11749, 116eqeltrrd 2518 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
11810, 117elind 3540 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) )
11912, 13, 14, 11, 68dprddisj 16493 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  } )
120118, 119eleqtrd 2519 . . . . . 6  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  {  .0.  } )
121 elsni 3902 . . . . . 6  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( F `  x
)  =  .0.  )
122120, 121syl 16 . . . . 5  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  =  .0.  )
123122mpteq2dva 4378 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  ( x  e.  I  |->  ( F `  x
) )  =  ( x  e.  I  |->  .0.  ) )
1248, 123eqtrd 2475 . . 3  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  .0.  )
)
125124ex 434 . 2  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  ->  F  =  ( x  e.  I  |->  .0.  ) )
)
12611gsumz 15511 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  _V )  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
12752, 26, 126syl2anc 661 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
128 oveq2 6099 . . . 4  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( x  e.  I  |->  .0.  ) ) )
129128eqeq1d 2451 . . 3  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( ( G  gsumg  F )  =  .0.  <->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  ) )
130127, 129syl5ibrcom 222 . 2  |-  ( ph  ->  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  .0.  )
)
131125, 130impbid 191 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   {crab 2719   _Vcvv 2972    \ cdif 3325    i^i cin 3327    C_ wss 3328   ifcif 3791   ~Pcpw 3860   {csn 3877   U.cuni 4091   class class class wbr 4292    e. cmpt 4350   `'ccnv 4839   dom cdm 4840   ran crn 4841   "cima 4843    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091    oFcof 6318   X_cixp 7263   Fincfn 7310   Basecbs 14174   0gc0g 14378    gsumg cgsu 14379  Moorecmre 14520  mrClscmrc 14521  ACScacs 14523   Mndcmnd 15409   Grpcgrp 15410   -gcsg 15413  SubMndcsubmnd 15463  SubGrpcsubg 15675  Cntzccntz 15833   DProd cdprd 16475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-fzo 11549  df-seq 11807  df-hash 12104  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-0g 14380  df-gsum 14381  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-mhm 15464  df-submnd 15465  df-grp 15545  df-minusg 15546  df-sbg 15547  df-mulg 15548  df-subg 15678  df-ghm 15745  df-gim 15787  df-cntz 15835  df-oppg 15861  df-cmn 16279  df-dprd 16477
This theorem is referenced by:  dprdf11OLD  16520
  Copyright terms: Public domain W3C validator