MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcntz Structured version   Unicode version

Theorem dprdfcntz 16832
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
dprdff.1  |-  ( ph  ->  G dom DProd  S )
dprdff.2  |-  ( ph  ->  dom  S  =  I )
dprdff.3  |-  ( ph  ->  F  e.  W )
dprdfcntz.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdfcntz  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
Distinct variable groups:    h, F    h, i, I    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    G( h, i)    W( h, i)    .0. ( i)    Z( h, i)

Proof of Theorem dprdfcntz
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdff.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
2 dprdff.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
3 dprdff.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
4 dprdff.3 . . . . 5  |-  ( ph  ->  F  e.  W )
5 eqid 2460 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 16829 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
7 ffn 5722 . . . 4  |-  ( F : I --> ( Base `  G )  ->  F  Fn  I )
86, 7syl 16 . . 3  |-  ( ph  ->  F  Fn  I )
96ffvelrnda 6012 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  G
) )
10 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  y  =  z )
1110fveq2d 5861 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  ( F `  y )  =  ( F `  z ) )
1210eqcomd 2468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  z  =  y )
1312fveq2d 5861 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  ( F `  z )  =  ( F `  y ) )
1411, 13oveq12d 6293 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
152ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  G dom DProd  S )
163ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  dom  S  =  I )
17 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  y  e.  I )
18 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  z  e.  I )
19 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  y  =/=  z )
20 dprdfcntz.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
2115, 16, 17, 18, 19, 20dprdcntz 16825 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( S `  y )  C_  ( Z `  ( S `  z )
) )
221, 2, 3, 4dprdfcl 16830 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( S `  y
) )
2322ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  y )  e.  ( S `  y
) )
2421, 23sseldd 3498 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  y )  e.  ( Z `  ( S `  z )
) )
251, 2, 3, 4dprdfcl 16830 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  I )  ->  ( F `  z )  e.  ( S `  z
) )
2625adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  I )  /\  z  e.  I )  ->  ( F `  z )  e.  ( S `  z
) )
2726adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  z )  e.  ( S `  z
) )
28 eqid 2460 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
2928, 20cntzi 16155 . . . . . . . . 9  |-  ( ( ( F `  y
)  e.  ( Z `
 ( S `  z ) )  /\  ( F `  z )  e.  ( S `  z ) )  -> 
( ( F `  y ) ( +g  `  G ) ( F `
 z ) )  =  ( ( F `
 z ) ( +g  `  G ) ( F `  y
) ) )
3024, 27, 29syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3114, 30pm2.61dane 2778 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  I )  /\  z  e.  I )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3231ralrimiva 2871 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) )
338adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  Fn  I )
34 oveq2 6283 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
( F `  y
) ( +g  `  G
) x )  =  ( ( F `  y ) ( +g  `  G ) ( F `
 z ) ) )
35 oveq1 6282 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  G
) ( F `  y ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3634, 35eqeq12d 2482 . . . . . . . 8  |-  ( x  =  ( F `  z )  ->  (
( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3736ralrn 6015 . . . . . . 7  |-  ( F  Fn  I  ->  ( A. x  e.  ran  F ( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3833, 37syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( A. x  e.  ran  F ( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3932, 38mpbird 232 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  A. x  e.  ran  F ( ( F `  y ) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) )
40 frn 5728 . . . . . . . 8  |-  ( F : I --> ( Base `  G )  ->  ran  F 
C_  ( Base `  G
) )
416, 40syl 16 . . . . . . 7  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
4241adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ran  F 
C_  ( Base `  G
) )
435, 28, 20elcntz 16148 . . . . . 6  |-  ( ran 
F  C_  ( Base `  G )  ->  (
( F `  y
)  e.  ( Z `
 ran  F )  <->  ( ( F `  y
)  e.  ( Base `  G )  /\  A. x  e.  ran  F ( ( F `  y
) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) ) ) )
4442, 43syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( F `  y
)  e.  ( Z `
 ran  F )  <->  ( ( F `  y
)  e.  ( Base `  G )  /\  A. x  e.  ran  F ( ( F `  y
) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) ) ) )
459, 39, 44mpbir2and 915 . . . 4  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Z `  ran  F ) )
4645ralrimiva 2871 . . 3  |-  ( ph  ->  A. y  e.  I 
( F `  y
)  e.  ( Z `
 ran  F )
)
47 ffnfv 6038 . . 3  |-  ( F : I --> ( Z `
 ran  F )  <->  ( F  Fn  I  /\  A. y  e.  I  ( F `  y )  e.  ( Z `  ran  F ) ) )
488, 46, 47sylanbrc 664 . 2  |-  ( ph  ->  F : I --> ( Z `
 ran  F )
)
49 frn 5728 . 2  |-  ( F : I --> ( Z `
 ran  F )  ->  ran  F  C_  ( Z `  ran  F ) )
5048, 49syl 16 1  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   {crab 2811    C_ wss 3469   class class class wbr 4440   dom cdm 4992   ran crn 4993    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   X_cixp 7459   finSupp cfsupp 7818   Basecbs 14479   +g cplusg 14544  Cntzccntz 16141   DProd cdprd 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-ixp 7460  df-subg 15986  df-cntz 16143  df-dprd 16810
This theorem is referenced by:  dprdssv  16839  dprdfinv  16842  dprdfadd  16843  dprdfeq0  16845  dprdlub  16856  dmdprdsplitlem  16867  dpjidcl  16890
  Copyright terms: Public domain W3C validator