MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Unicode version

Theorem dprdf1o 17274
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1  |-  ( ph  ->  G dom DProd  S )
dprdf1o.2  |-  ( ph  ->  dom  S  =  I )
dprdf1o.3  |-  ( ph  ->  F : J -1-1-onto-> I )
Assertion
Ref Expression
dprdf1o  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )

Proof of Theorem dprdf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2454 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2454 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 dprdf1o.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
5 dprdgrp 17233 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
64, 5syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
7 dprdf1o.3 . . . . 5  |-  ( ph  ->  F : J -1-1-onto-> I )
8 f1of1 5797 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J -1-1-> I )
97, 8syl 16 . . . 4  |-  ( ph  ->  F : J -1-1-> I
)
10 dprdf1o.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
114, 10dprddomcld 17227 . . . 4  |-  ( ph  ->  I  e.  _V )
12 f1dmex 6743 . . . 4  |-  ( ( F : J -1-1-> I  /\  I  e.  _V )  ->  J  e.  _V )
139, 11, 12syl2anc 659 . . 3  |-  ( ph  ->  J  e.  _V )
144, 10dprdf2 17235 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
15 f1of 5798 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J
--> I )
167, 15syl 16 . . . 4  |-  ( ph  ->  F : J --> I )
17 fco 5723 . . . 4  |-  ( ( S : I --> (SubGrp `  G )  /\  F : J --> I )  -> 
( S  o.  F
) : J --> (SubGrp `  G ) )
1814, 16, 17syl2anc 659 . . 3  |-  ( ph  ->  ( S  o.  F
) : J --> (SubGrp `  G ) )
194adantr 463 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  G dom DProd  S )
2010adantr 463 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  dom  S  =  I )
2116adantr 463 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J --> I )
22 simpr1 1000 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  e.  J )
2321, 22ffvelrnd 6008 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  e.  I )
24 simpr2 1001 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
y  e.  J )
2521, 24ffvelrnd 6008 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  y
)  e.  I )
26 simpr3 1002 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  =/=  y )
279adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J -1-1-> I )
28 f1fveq 6145 . . . . . . . 8  |-  ( ( F : J -1-1-> I  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
2927, 22, 24, 28syl12anc 1224 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
x  =  y ) )
3029necon3bid 2712 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =/=  ( F `  y )  <->  x  =/=  y ) )
3126, 30mpbird 232 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  =/=  ( F `
 y ) )
3219, 20, 23, 25, 31, 1dprdcntz 17236 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( S `  ( F `  x )
)  C_  ( (Cntz `  G ) `  ( S `  ( F `  y ) ) ) )
33 fvco3 5925 . . . . 5  |-  ( ( F : J --> I  /\  x  e.  J )  ->  ( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
3421, 22, 33syl2anc 659 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
35 fvco3 5925 . . . . . 6  |-  ( ( F : J --> I  /\  y  e.  J )  ->  ( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
3621, 24, 35syl2anc 659 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
3736fveq2d 5852 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( ( S  o.  F ) `  y ) )  =  ( (Cntz `  G
) `  ( S `  ( F `  y
) ) ) )
3832, 34, 373sstr4d 3532 . . 3  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  C_  ( (Cntz `  G ) `  (
( S  o.  F
) `  y )
) )
3916, 33sylan 469 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) `  x )  =  ( S `  ( F `  x ) ) )
40 imaco 5495 . . . . . . . . 9  |-  ( ( S  o.  F )
" ( J  \  { x } ) )  =  ( S
" ( F "
( J  \  {
x } ) ) )
417adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  F : J -1-1-onto-> I )
42 dff1o3 5804 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  <->  ( F : J -onto-> I  /\  Fun  `' F ) )
4342simprbi 462 . . . . . . . . . . . 12  |-  ( F : J -1-1-onto-> I  ->  Fun  `' F )
44 imadif 5645 . . . . . . . . . . . 12  |-  ( Fun  `' F  ->  ( F
" ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
4541, 43, 443syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
46 f1ofo 5805 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  ->  F : J -onto-> I )
47 foima 5782 . . . . . . . . . . . . 13  |-  ( F : J -onto-> I  -> 
( F " J
)  =  I )
4841, 46, 473syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " J )  =  I )
49 f1ofn 5799 . . . . . . . . . . . . . . 15  |-  ( F : J -1-1-onto-> I  ->  F  Fn  J )
507, 49syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  J )
51 fnsnfv 5908 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  J  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F " { x } ) )
5250, 51sylan 469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F
" { x }
) )
5352eqcomd 2462 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " { x }
)  =  { ( F `  x ) } )
5448, 53difeq12d 3609 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  (
( F " J
)  \  ( F " { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
5545, 54eqtrd 2495 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
5655imaeq2d 5325 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  J )  ->  ( S " ( F "
( J  \  {
x } ) ) )  =  ( S
" ( I  \  { ( F `  x ) } ) ) )
5740, 56syl5eq 2507 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) " ( J 
\  { x }
) )  =  ( S " ( I 
\  { ( F `
 x ) } ) ) )
5857unieqd 4245 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  U. (
( S  o.  F
) " ( J 
\  { x }
) )  =  U. ( S " ( I 
\  { ( F `
 x ) } ) ) )
5958fveq2d 5852 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  o.  F ) " ( J  \  { x }
) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { ( F `  x ) } ) ) ) )
6039, 59ineq12d 3687 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  ( ( S `  ( F `  x ) )  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) ) )
614adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  G dom DProd  S )
6210adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  dom  S  =  I )
6316ffvelrnda 6007 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( F `  x )  e.  I )
6461, 62, 63, 2, 3dprddisj 17237 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( S `  ( F `  x )
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) )  =  { ( 0g `  G ) } )
6560, 64eqtrd 2495 . . . 4  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
66 eqimss 3541 . . . 4  |-  ( ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) }  ->  ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
6765, 66syl 16 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 17225 . 2  |-  ( ph  ->  G dom DProd  ( S  o.  F ) )
69 rnco2 5497 . . . . . 6  |-  ran  ( S  o.  F )  =  ( S " ran  F )
70 forn 5780 . . . . . . . . 9  |-  ( F : J -onto-> I  ->  ran  F  =  I )
717, 46, 703syl 20 . . . . . . . 8  |-  ( ph  ->  ran  F  =  I )
7271imaeq2d 5325 . . . . . . 7  |-  ( ph  ->  ( S " ran  F )  =  ( S
" I ) )
73 ffn 5713 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
74 fnima 5681 . . . . . . . 8  |-  ( S  Fn  I  ->  ( S " I )  =  ran  S )
7514, 73, 743syl 20 . . . . . . 7  |-  ( ph  ->  ( S " I
)  =  ran  S
)
7672, 75eqtrd 2495 . . . . . 6  |-  ( ph  ->  ( S " ran  F )  =  ran  S
)
7769, 76syl5eq 2507 . . . . 5  |-  ( ph  ->  ran  ( S  o.  F )  =  ran  S )
7877unieqd 4245 . . . 4  |-  ( ph  ->  U. ran  ( S  o.  F )  = 
U. ran  S )
7978fveq2d 5852 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S ) )
803dprdspan 17269 . . . 4  |-  ( G dom DProd  ( S  o.  F )  ->  ( G DProd  ( S  o.  F
) )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  ( S  o.  F
) ) )
8168, 80syl 16 . . 3  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  ( S  o.  F )
) )
823dprdspan 17269 . . . 4  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
834, 82syl 16 . . 3  |-  ( ph  ->  ( G DProd  S )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
) )
8479, 81, 833eqtr4d 2505 . 2  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S
) )
8568, 84jca 530 1  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   _Vcvv 3106    \ cdif 3458    i^i cin 3460    C_ wss 3461   {csn 4016   U.cuni 4235   class class class wbr 4439   `'ccnv 4987   dom cdm 4988   ran crn 4989   "cima 4991    o. ccom 4992   Fun wfun 5564    Fn wfn 5565   -->wf 5566   -1-1->wf1 5567   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   0gc0g 14929  mrClscmrc 15072   Grpcgrp 16252  SubGrpcsubg 16394  Cntzccntz 16552   DProd cdprd 17219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-gsum 14932  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-ghm 16464  df-gim 16506  df-cntz 16554  df-oppg 16580  df-cmn 16999  df-dprd 17221
This theorem is referenced by:  dprdf1  17275  ablfaclem2  17332
  Copyright terms: Public domain W3C validator