MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Unicode version

Theorem dprdf1o 16661
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1  |-  ( ph  ->  G dom DProd  S )
dprdf1o.2  |-  ( ph  ->  dom  S  =  I )
dprdf1o.3  |-  ( ph  ->  F : J -1-1-onto-> I )
Assertion
Ref Expression
dprdf1o  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )

Proof of Theorem dprdf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2454 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2454 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 dprdf1o.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
5 dprdgrp 16621 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
64, 5syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
7 dprdf1o.3 . . . . 5  |-  ( ph  ->  F : J -1-1-onto-> I )
8 f1of1 5751 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J -1-1-> I )
97, 8syl 16 . . . 4  |-  ( ph  ->  F : J -1-1-> I
)
10 dprdf1o.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
11 reldmdprd 16611 . . . . . . 7  |-  Rel  dom DProd
1211brrelex2i 4991 . . . . . 6  |-  ( G dom DProd  S  ->  S  e. 
_V )
13 dmexg 6622 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
144, 12, 133syl 20 . . . . 5  |-  ( ph  ->  dom  S  e.  _V )
1510, 14eqeltrrd 2543 . . . 4  |-  ( ph  ->  I  e.  _V )
16 f1dmex 6660 . . . 4  |-  ( ( F : J -1-1-> I  /\  I  e.  _V )  ->  J  e.  _V )
179, 15, 16syl2anc 661 . . 3  |-  ( ph  ->  J  e.  _V )
184, 10dprdf2 16623 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
19 f1of 5752 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J
--> I )
207, 19syl 16 . . . 4  |-  ( ph  ->  F : J --> I )
21 fco 5679 . . . 4  |-  ( ( S : I --> (SubGrp `  G )  /\  F : J --> I )  -> 
( S  o.  F
) : J --> (SubGrp `  G ) )
2218, 20, 21syl2anc 661 . . 3  |-  ( ph  ->  ( S  o.  F
) : J --> (SubGrp `  G ) )
234adantr 465 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  G dom DProd  S )
2410adantr 465 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  dom  S  =  I )
2520adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J --> I )
26 simpr1 994 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  e.  J )
27 ffvelrn 5953 . . . . . 6  |-  ( ( F : J --> I  /\  x  e.  J )  ->  ( F `  x
)  e.  I )
2825, 26, 27syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  e.  I )
29 simpr2 995 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
y  e.  J )
30 ffvelrn 5953 . . . . . 6  |-  ( ( F : J --> I  /\  y  e.  J )  ->  ( F `  y
)  e.  I )
3125, 29, 30syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  y
)  e.  I )
32 simpr3 996 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  =/=  y )
339adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J -1-1-> I )
34 f1fveq 6087 . . . . . . . 8  |-  ( ( F : J -1-1-> I  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
3533, 26, 29, 34syl12anc 1217 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
x  =  y ) )
3635necon3bid 2710 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =/=  ( F `  y )  <->  x  =/=  y ) )
3732, 36mpbird 232 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  =/=  ( F `
 y ) )
3823, 24, 28, 31, 37, 1dprdcntz 16624 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( S `  ( F `  x )
)  C_  ( (Cntz `  G ) `  ( S `  ( F `  y ) ) ) )
39 fvco3 5880 . . . . 5  |-  ( ( F : J --> I  /\  x  e.  J )  ->  ( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
4025, 26, 39syl2anc 661 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
41 fvco3 5880 . . . . . 6  |-  ( ( F : J --> I  /\  y  e.  J )  ->  ( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
4225, 29, 41syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
4342fveq2d 5806 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( ( S  o.  F ) `  y ) )  =  ( (Cntz `  G
) `  ( S `  ( F `  y
) ) ) )
4438, 40, 433sstr4d 3510 . . 3  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  C_  ( (Cntz `  G ) `  (
( S  o.  F
) `  y )
) )
4520, 39sylan 471 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) `  x )  =  ( S `  ( F `  x ) ) )
46 imaco 5454 . . . . . . . . 9  |-  ( ( S  o.  F )
" ( J  \  { x } ) )  =  ( S
" ( F "
( J  \  {
x } ) ) )
477adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  F : J -1-1-onto-> I )
48 dff1o3 5758 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  <->  ( F : J -onto-> I  /\  Fun  `' F ) )
4948simprbi 464 . . . . . . . . . . . 12  |-  ( F : J -1-1-onto-> I  ->  Fun  `' F )
50 imadif 5604 . . . . . . . . . . . 12  |-  ( Fun  `' F  ->  ( F
" ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
5147, 49, 503syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
52 f1ofo 5759 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  ->  F : J -onto-> I )
53 foima 5736 . . . . . . . . . . . . 13  |-  ( F : J -onto-> I  -> 
( F " J
)  =  I )
5447, 52, 533syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " J )  =  I )
55 f1ofn 5753 . . . . . . . . . . . . . . 15  |-  ( F : J -1-1-onto-> I  ->  F  Fn  J )
567, 55syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  J )
57 fnsnfv 5863 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  J  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F " { x } ) )
5856, 57sylan 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F
" { x }
) )
5958eqcomd 2462 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " { x }
)  =  { ( F `  x ) } )
6054, 59difeq12d 3586 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  (
( F " J
)  \  ( F " { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
6151, 60eqtrd 2495 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
6261imaeq2d 5280 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  J )  ->  ( S " ( F "
( J  \  {
x } ) ) )  =  ( S
" ( I  \  { ( F `  x ) } ) ) )
6346, 62syl5eq 2507 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) " ( J 
\  { x }
) )  =  ( S " ( I 
\  { ( F `
 x ) } ) ) )
6463unieqd 4212 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  U. (
( S  o.  F
) " ( J 
\  { x }
) )  =  U. ( S " ( I 
\  { ( F `
 x ) } ) ) )
6564fveq2d 5806 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  o.  F ) " ( J  \  { x }
) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { ( F `  x ) } ) ) ) )
6645, 65ineq12d 3664 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  ( ( S `  ( F `  x ) )  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) ) )
674adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  G dom DProd  S )
6810adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  dom  S  =  I )
6920, 27sylan 471 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( F `  x )  e.  I )
7067, 68, 69, 2, 3dprddisj 16625 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( S `  ( F `  x )
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) )  =  { ( 0g `  G ) } )
7166, 70eqtrd 2495 . . . 4  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
72 eqimss 3519 . . . 4  |-  ( ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) }  ->  ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
7371, 72syl 16 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
741, 2, 3, 6, 17, 22, 44, 73dmdprdd 16613 . 2  |-  ( ph  ->  G dom DProd  ( S  o.  F ) )
75 rnco2 5456 . . . . . 6  |-  ran  ( S  o.  F )  =  ( S " ran  F )
76 forn 5734 . . . . . . . . 9  |-  ( F : J -onto-> I  ->  ran  F  =  I )
777, 52, 763syl 20 . . . . . . . 8  |-  ( ph  ->  ran  F  =  I )
7877imaeq2d 5280 . . . . . . 7  |-  ( ph  ->  ( S " ran  F )  =  ( S
" I ) )
79 ffn 5670 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
80 fnima 5640 . . . . . . . 8  |-  ( S  Fn  I  ->  ( S " I )  =  ran  S )
8118, 79, 803syl 20 . . . . . . 7  |-  ( ph  ->  ( S " I
)  =  ran  S
)
8278, 81eqtrd 2495 . . . . . 6  |-  ( ph  ->  ( S " ran  F )  =  ran  S
)
8375, 82syl5eq 2507 . . . . 5  |-  ( ph  ->  ran  ( S  o.  F )  =  ran  S )
8483unieqd 4212 . . . 4  |-  ( ph  ->  U. ran  ( S  o.  F )  = 
U. ran  S )
8584fveq2d 5806 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S ) )
863dprdspan 16656 . . . 4  |-  ( G dom DProd  ( S  o.  F )  ->  ( G DProd  ( S  o.  F
) )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  ( S  o.  F
) ) )
8774, 86syl 16 . . 3  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  ( S  o.  F )
) )
883dprdspan 16656 . . . 4  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
894, 88syl 16 . . 3  |-  ( ph  ->  ( G DProd  S )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
) )
9085, 87, 893eqtr4d 2505 . 2  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S
) )
9174, 90jca 532 1  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   _Vcvv 3078    \ cdif 3436    i^i cin 3438    C_ wss 3439   {csn 3988   U.cuni 4202   class class class wbr 4403   `'ccnv 4950   dom cdm 4951   ran crn 4952   "cima 4954    o. ccom 4955   Fun wfun 5523    Fn wfn 5524   -->wf 5525   -1-1->wf1 5526   -onto->wfo 5527   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203   0gc0g 14501  mrClscmrc 14644   Grpcgrp 15533  SubGrpcsubg 15798  Cntzccntz 15956   DProd cdprd 16607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-tpos 6858  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-oi 7839  df-card 8224  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-fzo 11670  df-seq 11928  df-hash 12225  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-0g 14503  df-gsum 14504  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-mhm 15587  df-submnd 15588  df-grp 15668  df-minusg 15669  df-sbg 15670  df-mulg 15671  df-subg 15801  df-ghm 15868  df-gim 15910  df-cntz 15958  df-oppg 15984  df-cmn 16404  df-dprd 16609
This theorem is referenced by:  dprdf1  16662  ablfaclem2  16719
  Copyright terms: Public domain W3C validator