MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Structured version   Unicode version

Theorem dprdcntz2 16873
Description: The function  S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz2.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz2.c  |-  ( ph  ->  C  C_  I )
dprdcntz2.d  |-  ( ph  ->  D  C_  I )
dprdcntz2.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdcntz2.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdcntz2  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )

Proof of Theorem dprdcntz2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dprdcntz2.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
3 dprdcntz2.c . . . 4  |-  ( ph  ->  C  C_  I )
41, 2, 3dprdres 16862 . . 3  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
54simpld 459 . 2  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
6 dmres 5292 . . 3  |-  dom  ( S  |`  C )  =  ( C  i^i  dom  S )
73, 2sseqtr4d 3541 . . . 4  |-  ( ph  ->  C  C_  dom  S )
8 df-ss 3490 . . . 4  |-  ( C 
C_  dom  S  <->  ( C  i^i  dom  S )  =  C )
97, 8sylib 196 . . 3  |-  ( ph  ->  ( C  i^i  dom  S )  =  C )
106, 9syl5eq 2520 . 2  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
11 dprdgrp 16826 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
121, 11syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
13 eqid 2467 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
1413dprdssv 16843 . . 3  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
15 dprdcntz2.z . . . 4  |-  Z  =  (Cntz `  G )
1613, 15cntzsubg 16166 . . 3  |-  ( ( G  e.  Grp  /\  ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )
)  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
1712, 14, 16sylancl 662 . 2  |-  ( ph  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
18 fvres 5878 . . . 4  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
1918adantl 466 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
20 dprdcntz2.d . . . . . . . 8  |-  ( ph  ->  D  C_  I )
211, 2, 20dprdres 16862 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
2221simpld 459 . . . . . 6  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
2322adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  D ) )
24 dprdsubg 16858 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
2523, 24syl 16 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
263sselda 3504 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  I )
271, 2dprdf2 16828 . . . . . 6  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
2827ffvelrnda 6019 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
2926, 28syldan 470 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  e.  (SubGrp `  G )
)
30 dmres 5292 . . . . . . 7  |-  dom  ( S  |`  D )  =  ( D  i^i  dom  S )
3120, 2sseqtr4d 3541 . . . . . . . 8  |-  ( ph  ->  D  C_  dom  S )
32 df-ss 3490 . . . . . . . 8  |-  ( D 
C_  dom  S  <->  ( D  i^i  dom  S )  =  D )
3331, 32sylib 196 . . . . . . 7  |-  ( ph  ->  ( D  i^i  dom  S )  =  D )
3430, 33syl5eq 2520 . . . . . 6  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
3534adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  D )  =  D )
3612adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  G  e.  Grp )
3713subgss 15994 . . . . . . 7  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( S `  x )  C_  ( Base `  G ) )
3829, 37syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Base `  G
) )
3913, 15cntzsubg 16166 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S `  x ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
4036, 38, 39syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
41 fvres 5878 . . . . . . 7  |-  ( y  e.  D  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
4241adantl 466 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
431ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  G dom DProd  S )
442ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  dom  S  =  I )
4520adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  D  C_  I )
4645sselda 3504 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  I )
4726adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  x  e.  I )
48 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  D )
49 noel 3789 . . . . . . . . . . . 12  |-  -.  x  e.  (/)
50 elin 3687 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  i^i  D )  <->  ( x  e.  C  /\  x  e.  D ) )
51 dprdcntz2.i . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
5251eleq2d 2537 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( C  i^i  D )  <-> 
x  e.  (/) ) )
5350, 52syl5bbr 259 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  C  /\  x  e.  D )  <->  x  e.  (/) ) )
5449, 53mtbiri 303 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( x  e.  C  /\  x  e.  D ) )
55 imnan 422 . . . . . . . . . . 11  |-  ( ( x  e.  C  ->  -.  x  e.  D
)  <->  -.  ( x  e.  C  /\  x  e.  D ) )
5654, 55sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  C  ->  -.  x  e.  D
) )
5756imp 429 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  -.  x  e.  D )
5857adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  -.  x  e.  D )
59 nelne2 2797 . . . . . . . 8  |-  ( ( y  e.  D  /\  -.  x  e.  D
)  ->  y  =/=  x )
6048, 58, 59syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  =/=  x )
6143, 44, 46, 47, 60, 15dprdcntz 16829 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  ( S `  y )  C_  ( Z `  ( S `  x )
) )
6242, 61eqsstrd 3538 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  C_  ( Z `  ( S `
 x ) ) )
6323, 35, 40, 62dprdlub 16860 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  C_  ( Z `  ( S `  x
) ) )
6415, 25, 29, 63cntzrecd 16489 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
6519, 64eqsstrd 3538 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
665, 10, 17, 65dprdlub 16860 1  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    i^i cin 3475    C_ wss 3476   (/)c0 3785   class class class wbr 4447   dom cdm 4999    |` cres 5001   ` cfv 5586  (class class class)co 6282   Basecbs 14483   Grpcgrp 15720  SubGrpcsubg 15987  Cntzccntz 16145   DProd cdprd 16812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12071  df-hash 12368  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-0g 14690  df-gsum 14691  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-mhm 15774  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mulg 15858  df-subg 15990  df-ghm 16057  df-gim 16099  df-cntz 16147  df-oppg 16173  df-cmn 16593  df-dprd 16814
This theorem is referenced by:  dprd2da  16878  dmdprdsplit  16883  ablfac1eulem  16910  ablfac1eu  16911
  Copyright terms: Public domain W3C validator