MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Structured version   Unicode version

Theorem dprdcntz2 17670
Description: The function  S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz2.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz2.c  |-  ( ph  ->  C  C_  I )
dprdcntz2.d  |-  ( ph  ->  D  C_  I )
dprdcntz2.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdcntz2.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdcntz2  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )

Proof of Theorem dprdcntz2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dprdcntz2.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
3 dprdcntz2.c . . . 4  |-  ( ph  ->  C  C_  I )
41, 2, 3dprdres 17660 . . 3  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
54simpld 460 . 2  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
6 dmres 5144 . . 3  |-  dom  ( S  |`  C )  =  ( C  i^i  dom  S )
73, 2sseqtr4d 3501 . . . 4  |-  ( ph  ->  C  C_  dom  S )
8 df-ss 3450 . . . 4  |-  ( C 
C_  dom  S  <->  ( C  i^i  dom  S )  =  C )
97, 8sylib 199 . . 3  |-  ( ph  ->  ( C  i^i  dom  S )  =  C )
106, 9syl5eq 2475 . 2  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
11 dprdgrp 17636 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
121, 11syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
13 eqid 2422 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
1413dprdssv 17648 . . 3  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
15 dprdcntz2.z . . . 4  |-  Z  =  (Cntz `  G )
1613, 15cntzsubg 16989 . . 3  |-  ( ( G  e.  Grp  /\  ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )
)  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
1712, 14, 16sylancl 666 . 2  |-  ( ph  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
18 fvres 5895 . . . 4  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
1918adantl 467 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
20 dprdcntz2.d . . . . . . . 8  |-  ( ph  ->  D  C_  I )
211, 2, 20dprdres 17660 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
2221simpld 460 . . . . . 6  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
2322adantr 466 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  D ) )
24 dprdsubg 17656 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
2523, 24syl 17 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
263sselda 3464 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  I )
271, 2dprdf2 17638 . . . . . 6  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
2827ffvelrnda 6037 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
2926, 28syldan 472 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  e.  (SubGrp `  G )
)
30 dmres 5144 . . . . . . 7  |-  dom  ( S  |`  D )  =  ( D  i^i  dom  S )
3120, 2sseqtr4d 3501 . . . . . . . 8  |-  ( ph  ->  D  C_  dom  S )
32 df-ss 3450 . . . . . . . 8  |-  ( D 
C_  dom  S  <->  ( D  i^i  dom  S )  =  D )
3331, 32sylib 199 . . . . . . 7  |-  ( ph  ->  ( D  i^i  dom  S )  =  D )
3430, 33syl5eq 2475 . . . . . 6  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
3534adantr 466 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  D )  =  D )
3612adantr 466 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  G  e.  Grp )
3713subgss 16817 . . . . . . 7  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( S `  x )  C_  ( Base `  G ) )
3829, 37syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Base `  G
) )
3913, 15cntzsubg 16989 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S `  x ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
4036, 38, 39syl2anc 665 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
41 fvres 5895 . . . . . . 7  |-  ( y  e.  D  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
4241adantl 467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
431ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  G dom DProd  S )
442ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  dom  S  =  I )
4520adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  D  C_  I )
4645sselda 3464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  I )
4726adantr 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  x  e.  I )
48 simpr 462 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  D )
49 noel 3765 . . . . . . . . . . . 12  |-  -.  x  e.  (/)
50 elin 3649 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  i^i  D )  <->  ( x  e.  C  /\  x  e.  D ) )
51 dprdcntz2.i . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
5251eleq2d 2492 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( C  i^i  D )  <-> 
x  e.  (/) ) )
5350, 52syl5bbr 262 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  C  /\  x  e.  D )  <->  x  e.  (/) ) )
5449, 53mtbiri 304 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( x  e.  C  /\  x  e.  D ) )
55 imnan 423 . . . . . . . . . . 11  |-  ( ( x  e.  C  ->  -.  x  e.  D
)  <->  -.  ( x  e.  C  /\  x  e.  D ) )
5654, 55sylibr 215 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  C  ->  -.  x  e.  D
) )
5756imp 430 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  -.  x  e.  D )
5857adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  -.  x  e.  D )
59 nelne2 2750 . . . . . . . 8  |-  ( ( y  e.  D  /\  -.  x  e.  D
)  ->  y  =/=  x )
6048, 58, 59syl2anc 665 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  =/=  x )
6143, 44, 46, 47, 60, 15dprdcntz 17639 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  ( S `  y )  C_  ( Z `  ( S `  x )
) )
6242, 61eqsstrd 3498 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  C_  ( Z `  ( S `
 x ) ) )
6323, 35, 40, 62dprdlub 17658 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  C_  ( Z `  ( S `  x
) ) )
6415, 25, 29, 63cntzrecd 17327 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
6519, 64eqsstrd 3498 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
665, 10, 17, 65dprdlub 17658 1  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614    i^i cin 3435    C_ wss 3436   (/)c0 3761   class class class wbr 4423   dom cdm 4853    |` cres 4855   ` cfv 5601  (class class class)co 6305   Basecbs 15120   Grpcgrp 16668  SubGrpcsubg 16810  Cntzccntz 16968   DProd cdprd 17624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6984  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-map 7485  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-oi 8034  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-fzo 11923  df-seq 12220  df-hash 12522  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-0g 15339  df-gsum 15340  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-submnd 16582  df-grp 16672  df-minusg 16673  df-sbg 16674  df-mulg 16675  df-subg 16813  df-ghm 16880  df-gim 16922  df-cntz 16970  df-oppg 16996  df-cmn 17431  df-dprd 17626
This theorem is referenced by:  dprd2da  17674  dmdprdsplit  17679  ablfac1eulem  17704  ablfac1eu  17705
  Copyright terms: Public domain W3C validator