MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjval Unicode version

Theorem dpjval 15569
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1  |-  ( ph  ->  G dom DProd  S )
dpjfval.2  |-  ( ph  ->  dom  S  =  I )
dpjfval.p  |-  P  =  ( GdProj S )
dpjfval.q  |-  Q  =  ( proj 1 `  G )
dpjval.3  |-  ( ph  ->  X  e.  I )
Assertion
Ref Expression
dpjval  |-  ( ph  ->  ( P `  X
)  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )

Proof of Theorem dpjval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dpjfval.1 . . 3  |-  ( ph  ->  G dom DProd  S )
2 dpjfval.2 . . 3  |-  ( ph  ->  dom  S  =  I )
3 dpjfval.p . . 3  |-  P  =  ( GdProj S )
4 dpjfval.q . . 3  |-  Q  =  ( proj 1 `  G )
51, 2, 3, 4dpjfval 15568 . 2  |-  ( ph  ->  P  =  ( x  e.  I  |->  ( ( S `  x ) Q ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ) ) )
6 simpr 448 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  x  =  X )
76fveq2d 5691 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( S `  x )  =  ( S `  X ) )
86sneqd 3787 . . . . . 6  |-  ( (
ph  /\  x  =  X )  ->  { x }  =  { X } )
98difeq2d 3425 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  (
I  \  { x } )  =  ( I  \  { X } ) )
109reseq2d 5105 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  ( S  |`  ( I  \  { x } ) )  =  ( S  |`  ( I  \  { X } ) ) )
1110oveq2d 6056 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( G DProd  ( S  |`  (
I  \  { x } ) ) )  =  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )
127, 11oveq12d 6058 . 2  |-  ( (
ph  /\  x  =  X )  ->  (
( S `  x
) Q ( G DProd 
( S  |`  (
I  \  { x } ) ) ) )  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
13 dpjval.3 . 2  |-  ( ph  ->  X  e.  I )
14 ovex 6065 . . 3  |-  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )  e.  _V
1514a1i 11 . 2  |-  ( ph  ->  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )  e.  _V )
165, 12, 13, 15fvmptd 5769 1  |-  ( ph  ->  ( P `  X
)  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    \ cdif 3277   {csn 3774   class class class wbr 4172   dom cdm 4837    |` cres 4839   ` cfv 5413  (class class class)co 6040   proj 1cpj1 15224   DProd cdprd 15509  dProjcdpj 15510
This theorem is referenced by:  dpjf  15570  dpjidcl  15571  dpjlid  15574  dpjghm  15576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-ixp 7023  df-dprd 15511  df-dpj 15512
  Copyright terms: Public domain W3C validator