MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjval Structured version   Unicode version

Theorem dpjval 16907
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1  |-  ( ph  ->  G dom DProd  S )
dpjfval.2  |-  ( ph  ->  dom  S  =  I )
dpjfval.p  |-  P  =  ( GdProj S )
dpjfval.q  |-  Q  =  ( proj1 `  G )
dpjval.3  |-  ( ph  ->  X  e.  I )
Assertion
Ref Expression
dpjval  |-  ( ph  ->  ( P `  X
)  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )

Proof of Theorem dpjval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dpjfval.1 . . 3  |-  ( ph  ->  G dom DProd  S )
2 dpjfval.2 . . 3  |-  ( ph  ->  dom  S  =  I )
3 dpjfval.p . . 3  |-  P  =  ( GdProj S )
4 dpjfval.q . . 3  |-  Q  =  ( proj1 `  G )
51, 2, 3, 4dpjfval 16906 . 2  |-  ( ph  ->  P  =  ( x  e.  I  |->  ( ( S `  x ) Q ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ) ) )
6 simpr 461 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  x  =  X )
76fveq2d 5870 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( S `  x )  =  ( S `  X ) )
86sneqd 4039 . . . . . 6  |-  ( (
ph  /\  x  =  X )  ->  { x }  =  { X } )
98difeq2d 3622 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  (
I  \  { x } )  =  ( I  \  { X } ) )
109reseq2d 5273 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  ( S  |`  ( I  \  { x } ) )  =  ( S  |`  ( I  \  { X } ) ) )
1110oveq2d 6300 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( G DProd  ( S  |`  (
I  \  { x } ) ) )  =  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )
127, 11oveq12d 6302 . 2  |-  ( (
ph  /\  x  =  X )  ->  (
( S `  x
) Q ( G DProd 
( S  |`  (
I  \  { x } ) ) ) )  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
13 dpjval.3 . 2  |-  ( ph  ->  X  e.  I )
14 ovex 6309 . . 3  |-  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )  e.  _V
1514a1i 11 . 2  |-  ( ph  ->  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) )  e.  _V )
165, 12, 13, 15fvmptd 5955 1  |-  ( ph  ->  ( P `  X
)  =  ( ( S `  X ) Q ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473   {csn 4027   class class class wbr 4447   dom cdm 4999    |` cres 5001   ` cfv 5588  (class class class)co 6284   proj1cpj1 16461   DProd cdprd 16827  dProjcdpj 16828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-ixp 7470  df-dprd 16829  df-dpj 16830
This theorem is referenced by:  dpjf  16908  dpjidcl  16909  dpjlid  16912  dpjghm  16914  dpjidclOLD  16916
  Copyright terms: Public domain W3C validator