MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlsm Structured version   Unicode version

Theorem dpjlsm 16676
Description: The two subgroups that appear in dpjval 16678 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1  |-  ( ph  ->  G dom DProd  S )
dpjfval.2  |-  ( ph  ->  dom  S  =  I )
dpjlem.3  |-  ( ph  ->  X  e.  I )
dpjlsm.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
dpjlsm  |-  ( ph  ->  ( G DProd  S )  =  ( ( S `
 X )  .(+)  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )

Proof of Theorem dpjlsm
StepHypRef Expression
1 dpjfval.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dpjfval.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
31, 2dprdf2 16614 . . 3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
4 disjdif 3860 . . . 4  |-  ( { X }  i^i  (
I  \  { X } ) )  =  (/)
54a1i 11 . . 3  |-  ( ph  ->  ( { X }  i^i  ( I  \  { X } ) )  =  (/) )
6 undif2 3864 . . . 4  |-  ( { X }  u.  (
I  \  { X } ) )  =  ( { X }  u.  I )
7 dpjlem.3 . . . . . 6  |-  ( ph  ->  X  e.  I )
87snssd 4127 . . . . 5  |-  ( ph  ->  { X }  C_  I )
9 ssequn1 3635 . . . . 5  |-  ( { X }  C_  I  <->  ( { X }  u.  I )  =  I )
108, 9sylib 196 . . . 4  |-  ( ph  ->  ( { X }  u.  I )  =  I )
116, 10syl5req 2508 . . 3  |-  ( ph  ->  I  =  ( { X }  u.  (
I  \  { X } ) ) )
12 dpjlsm.s . . 3  |-  .(+)  =  (
LSSum `  G )
133, 5, 11, 12, 1dprdsplit 16670 . 2  |-  ( ph  ->  ( G DProd  S )  =  ( ( G DProd 
( S  |`  { X } ) )  .(+)  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
141, 2, 7dpjlem 16673 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  { X } ) )  =  ( S `
 X ) )
1514oveq1d 6216 . 2  |-  ( ph  ->  ( ( G DProd  ( S  |`  { X }
) )  .(+)  ( G DProd 
( S  |`  (
I  \  { X } ) ) ) )  =  ( ( S `  X ) 
.(+)  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
1613, 15eqtrd 2495 1  |-  ( ph  ->  ( G DProd  S )  =  ( ( S `
 X )  .(+)  ( G DProd  ( S  |`  ( I  \  { X } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758    \ cdif 3434    u. cun 3435    i^i cin 3436    C_ wss 3437   (/)c0 3746   {csn 3986   class class class wbr 4401   dom cdm 4949    |` cres 4951   ` cfv 5527  (class class class)co 6201   LSSumclsm 16255   DProd cdprd 16598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-of 6431  df-om 6588  df-1st 6688  df-2nd 6689  df-supp 6802  df-tpos 6856  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-ixp 7375  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-fsupp 7733  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-fzo 11667  df-seq 11925  df-hash 12222  df-ndx 14296  df-slot 14297  df-base 14298  df-sets 14299  df-ress 14300  df-plusg 14371  df-0g 14500  df-gsum 14501  df-mre 14644  df-mrc 14645  df-acs 14647  df-mnd 15535  df-mhm 15584  df-submnd 15585  df-grp 15665  df-minusg 15666  df-sbg 15667  df-mulg 15668  df-subg 15798  df-ghm 15865  df-gim 15907  df-cntz 15955  df-oppg 15981  df-lsm 16257  df-cmn 16401  df-dprd 16600
This theorem is referenced by:  dpjf  16679  dpjidcl  16680  dpjghm  16685  dpjidclOLD  16687
  Copyright terms: Public domain W3C validator