MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Unicode version

Theorem dpjidcl 16671
Description: The key property of projections: the sum of all the projections of  A is  A. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1  |-  ( ph  ->  G dom DProd  S )
dpjfval.2  |-  ( ph  ->  dom  S  =  I )
dpjfval.p  |-  P  =  ( GdProj S )
dpjidcl.3  |-  ( ph  ->  A  e.  ( G DProd 
S ) )
dpjidcl.0  |-  .0.  =  ( 0g `  G )
dpjidcl.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
Assertion
Ref Expression
dpjidcl  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  e.  W  /\  A  =  ( G  gsumg  ( x  e.  I  |->  ( ( P `  x ) `  A
) ) ) ) )
Distinct variable groups:    x, h,  .0.    h, i, G, x    P, h, x    ph, i, x    h, I, i, x   
x, W    A, h, x    S, h, i, x
Allowed substitution hints:    ph( h)    A( i)    P( i)    W( h, i)    .0. ( i)

Proof of Theorem dpjidcl
Dummy variables  k 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4  |-  ( ph  ->  A  e.  ( G DProd 
S ) )
2 dpjfval.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
3 dpjidcl.0 . . . . . 6  |-  .0.  =  ( 0g `  G )
4 dpjidcl.w . . . . . 6  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
53, 4eldprd 16600 . . . . 5  |-  ( dom 
S  =  I  -> 
( A  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  W  A  =  ( G  gsumg  f ) ) ) )
62, 5syl 16 . . . 4  |-  ( ph  ->  ( A  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  W  A  =  ( G  gsumg  f ) ) ) )
71, 6mpbid 210 . . 3  |-  ( ph  ->  ( G dom DProd  S  /\  E. f  e.  W  A  =  ( G  gsumg  f ) ) )
87simprd 463 . 2  |-  ( ph  ->  E. f  e.  W  A  =  ( G  gsumg  f ) )
9 dpjfval.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
109adantr 465 . . . 4  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  G dom DProd  S )
112adantr 465 . . . 4  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  dom  S  =  I )
129ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  G dom DProd  S )
132ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  dom  S  =  I )
14 dpjfval.p . . . . . 6  |-  P  =  ( GdProj S )
15 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  x  e.  I )
1612, 13, 14, 15dpjf 16670 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( P `  x
) : ( G DProd 
S ) --> ( S `
 x ) )
171ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  A  e.  ( G DProd 
S ) )
1816, 17ffvelrnd 5946 . . . 4  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( P `  x ) `  A
)  e.  ( S `
 x ) )
199, 2dprddomcld 16597 . . . . . . 7  |-  ( ph  ->  I  e.  _V )
20 mptexg 6049 . . . . . . 7  |-  ( I  e.  _V  ->  (
x  e.  I  |->  ( ( P `  x
) `  A )
)  e.  _V )
2119, 20syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( P `  x ) `  A
) )  e.  _V )
2221adantr 465 . . . . 5  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  e. 
_V )
23 funmpt 5555 . . . . . 6  |-  Fun  (
x  e.  I  |->  ( ( P `  x
) `  A )
)
2423a1i 11 . . . . 5  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  Fun  ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) )
25 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  f  e.  W
)
264, 10, 11, 25dprdffsupp 16612 . . . . 5  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  f finSupp  .0.  )
27 eldifi 3579 . . . . . . . 8  |-  ( x  e.  ( I  \ 
( f supp  .0.  )
)  ->  x  e.  I )
28 eqid 2451 . . . . . . . . . 10  |-  ( proj1 `  G )  =  ( proj1 `  G )
2912, 13, 14, 28, 15dpjval 16669 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( P `  x
)  =  ( ( S `  x ) ( proj1 `  G ) ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ) )
3029fveq1d 5794 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( P `  x ) `  A
)  =  ( ( ( S `  x
) ( proj1 `  G ) ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ) `  A ) )
3127, 30sylan2 474 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( ( P `  x ) `  A
)  =  ( ( ( S `  x
) ( proj1 `  G ) ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ) `  A ) )
32 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  A  =  ( G  gsumg  f ) )
33 eqid 2451 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
34 eqid 2451 . . . . . . . . . . 11  |-  (Cntz `  G )  =  (Cntz `  G )
35 dprdgrp 16603 . . . . . . . . . . . . 13  |-  ( G dom DProd  S  ->  G  e. 
Grp )
36 grpmnd 15661 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
3710, 35, 363syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  G  e.  Mnd )
3837adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  G  e.  Mnd )
3919ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  I  e.  _V )
404, 10, 11, 25, 33dprdff 16610 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  f : I --> ( Base `  G
) )
4140adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
f : I --> ( Base `  G ) )
4225adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  f  e.  W )
434, 12, 13, 42, 34dprdfcntz 16613 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ran  f  C_  (
(Cntz `  G ) `  ran  f ) )
4427, 43sylan2 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  ran  f  C_  ( (Cntz `  G ) `  ran  f ) )
45 snssi 4118 . . . . . . . . . . . . 13  |-  ( x  e.  ( I  \ 
( f supp  .0.  )
)  ->  { x }  C_  ( I  \ 
( f supp  .0.  )
) )
4645adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  { x }  C_  ( I  \  (
f supp  .0.  ) )
)
4746difss2d 3587 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  { x }  C_  I )
48 suppssdm 6806 . . . . . . . . . . . . . . 15  |-  ( f supp 
.0.  )  C_  dom  f
49 fdm 5664 . . . . . . . . . . . . . . . 16  |-  ( f : I --> ( Base `  G )  ->  dom  f  =  I )
5040, 49syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  dom  f  =  I )
5148, 50syl5sseq 3505 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( f supp  .0.  )  C_  I )
5251adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( f supp  .0.  )  C_  I )
53 ssconb 3590 . . . . . . . . . . . . 13  |-  ( ( { x }  C_  I  /\  ( f supp  .0.  )  C_  I )  -> 
( { x }  C_  ( I  \  (
f supp  .0.  ) )  <->  ( f supp  .0.  )  C_  ( I  \  { x } ) ) )
5447, 52, 53syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( { x }  C_  ( I  \  (
f supp  .0.  ) )  <->  ( f supp  .0.  )  C_  ( I  \  { x } ) ) )
5546, 54mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( f supp  .0.  )  C_  ( I  \  {
x } ) )
5626adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
f finSupp  .0.  )
5733, 3, 34, 38, 39, 41, 44, 55, 56gsumzres 16501 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( G  gsumg  ( f  |`  (
I  \  { x } ) ) )  =  ( G  gsumg  f ) )
5832, 57eqtr4d 2495 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  A  =  ( G  gsumg  ( f  |`  ( I  \  { x } ) ) ) )
59 eqid 2451 . . . . . . . . . . 11  |-  { h  e.  X_ i  e.  ( I  \  { x } ) ( ( S  |`  ( I  \  { x } ) ) `  i )  |  h finSupp  .0.  }  =  { h  e.  X_ i  e.  ( I  \  {
x } ) ( ( S  |`  (
I  \  { x } ) ) `  i )  |  h finSupp  .0.  }
60 difss 3584 . . . . . . . . . . . . . 14  |-  ( I 
\  { x }
)  C_  I
6160a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( I  \  {
x } )  C_  I )
6212, 13, 61dprdres 16639 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G dom DProd  ( S  |`  ( I  \  {
x } ) )  /\  ( G DProd  ( S  |`  ( I  \  { x } ) ) )  C_  ( G DProd  S ) ) )
6362simpld 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  G dom DProd  ( S  |`  ( I  \  {
x } ) ) )
6412, 13dprdf2 16605 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  S : I --> (SubGrp `  G ) )
65 fssres 5679 . . . . . . . . . . . . 13  |-  ( ( S : I --> (SubGrp `  G )  /\  (
I  \  { x } )  C_  I
)  ->  ( S  |`  ( I  \  {
x } ) ) : ( I  \  { x } ) --> (SubGrp `  G )
)
6664, 60, 65sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( S  |`  (
I  \  { x } ) ) : ( I  \  {
x } ) --> (SubGrp `  G ) )
67 fdm 5664 . . . . . . . . . . . 12  |-  ( ( S  |`  ( I  \  { x } ) ) : ( I 
\  { x }
) --> (SubGrp `  G )  ->  dom  ( S  |`  ( I  \  { x } ) )  =  ( I  \  {
x } ) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  dom  ( S  |`  ( I  \  { x } ) )  =  ( I  \  {
x } ) )
6940adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  f : I --> ( Base `  G ) )
7069feqmptd 5846 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  f  =  ( k  e.  I  |->  ( f `
 k ) ) )
7170reseq1d 5210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f  |`  (
I  \  { x } ) )  =  ( ( k  e.  I  |->  ( f `  k ) )  |`  ( I  \  { x } ) ) )
72 resmpt 5257 . . . . . . . . . . . . . 14  |-  ( ( I  \  { x } )  C_  I  ->  ( ( k  e.  I  |->  ( f `  k ) )  |`  ( I  \  { x } ) )  =  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) ) )
7360, 72ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( k  e.  I  |->  ( f `  k ) )  |`  ( I  \  { x } ) )  =  ( k  e.  ( I  \  { x } ) 
|->  ( f `  k
) )
7471, 73syl6eq 2508 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f  |`  (
I  \  { x } ) )  =  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) ) )
75 eldifi 3579 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( I  \  { x } )  ->  k  e.  I
)
764, 12, 13, 42dprdfcl 16611 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  I )  ->  (
f `  k )  e.  ( S `  k
) )
7775, 76sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  ( I  \  { x } ) )  -> 
( f `  k
)  e.  ( S `
 k ) )
78 fvres 5806 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( I  \  { x } )  ->  ( ( S  |`  ( I  \  {
x } ) ) `
 k )  =  ( S `  k
) )
7978adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  ( I  \  { x } ) )  -> 
( ( S  |`  ( I  \  { x } ) ) `  k )  =  ( S `  k ) )
8077, 79eleqtrrd 2542 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  ( I  \  { x } ) )  -> 
( f `  k
)  e.  ( ( S  |`  ( I  \  { x } ) ) `  k ) )
81 difexg 4541 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  _V  ->  (
I  \  { x } )  e.  _V )
8219, 81syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( I  \  {
x } )  e. 
_V )
83 mptexg 6049 . . . . . . . . . . . . . . . 16  |-  ( ( I  \  { x } )  e.  _V  ->  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) )  e.  _V )
8482, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) )  e.  _V )
8584ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) )  e.  _V )
86 funmpt 5555 . . . . . . . . . . . . . . 15  |-  Fun  (
k  e.  ( I 
\  { x }
)  |->  ( f `  k ) )
8786a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  Fun  ( k  e.  ( I  \  {
x } )  |->  ( f `  k ) ) )
8826adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  f finSupp  .0.  )
89 ssdif 3592 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  \  { x } )  C_  I  ->  ( ( I  \  { x } ) 
\  ( f supp  .0.  ) )  C_  (
I  \  ( f supp  .0.  ) ) )
9060, 89ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( I  \  { x } )  \  (
f supp  .0.  ) )  C_  ( I  \  (
f supp  .0.  ) )
9190sseli 3453 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( I 
\  { x }
)  \  ( f supp  .0.  ) )  ->  k  e.  ( I  \  (
f supp  .0.  ) )
)
92 ssid 3476 . . . . . . . . . . . . . . . . . 18  |-  ( f supp 
.0.  )  C_  (
f supp  .0.  )
9392a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f supp  .0.  )  C_  ( f supp  .0.  )
)
9419ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  I  e.  _V )
95 fvex 5802 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  G )  e. 
_V
963, 95eqeltri 2535 . . . . . . . . . . . . . . . . . 18  |-  .0.  e.  _V
9796a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  .0.  e.  _V )
9869, 93, 94, 97suppssr 6823 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  ( I  \  (
f supp  .0.  ) )
)  ->  ( f `  k )  =  .0.  )
9991, 98sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  k  e.  ( ( I  \  { x } ) 
\  ( f supp  .0.  ) ) )  -> 
( f `  k
)  =  .0.  )
10082ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( I  \  {
x } )  e. 
_V )
10199, 100suppss2 6826 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( k  e.  ( I  \  {
x } )  |->  ( f `  k ) ) supp  .0.  )  C_  ( f supp  .0.  )
)
102 fsuppsssupp 7740 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e.  ( I  \  {
x } )  |->  ( f `  k ) )  e.  _V  /\  Fun  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) ) )  /\  ( f finSupp  .0.  /\  ( ( k  e.  ( I  \  { x } ) 
|->  ( f `  k
) ) supp  .0.  )  C_  ( f supp  .0.  )
) )  ->  (
k  e.  ( I 
\  { x }
)  |->  ( f `  k ) ) finSupp  .0.  )
10385, 87, 88, 101, 102syl22anc 1220 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) ) finSupp  .0.  )
10459, 63, 68, 80, 103dprdwd 16609 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( k  e.  ( I  \  { x } )  |->  ( f `
 k ) )  e.  { h  e.  X_ i  e.  (
I  \  { x } ) ( ( S  |`  ( I  \  { x } ) ) `  i )  |  h finSupp  .0.  } )
10574, 104eqeltrd 2539 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f  |`  (
I  \  { x } ) )  e. 
{ h  e.  X_ i  e.  ( I  \  { x } ) ( ( S  |`  ( I  \  { x } ) ) `  i )  |  h finSupp  .0.  } )
1063, 59, 63, 68, 105eldprdi 16622 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G  gsumg  ( f  |`  (
I  \  { x } ) ) )  e.  ( G DProd  ( S  |`  ( I  \  { x } ) ) ) )
10727, 106sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( G  gsumg  ( f  |`  (
I  \  { x } ) ) )  e.  ( G DProd  ( S  |`  ( I  \  { x } ) ) ) )
10858, 107eqeltrd 2539 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  ->  A  e.  ( G DProd  ( S  |`  ( I  \  { x } ) ) ) )
109 eqid 2451 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
110 eqid 2451 . . . . . . . . . 10  |-  ( LSSum `  G )  =  (
LSSum `  G )
11164, 15ffvelrnd 5946 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( S `  x
)  e.  (SubGrp `  G ) )
112 dprdsubg 16635 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  ( I  \  { x } ) )  -> 
( G DProd  ( S  |`  ( I  \  {
x } ) ) )  e.  (SubGrp `  G ) )
11363, 112syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G DProd  ( S  |`  ( I  \  {
x } ) ) )  e.  (SubGrp `  G ) )
11412, 13, 15, 3dpjdisj 16666 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( S `  x )  i^i  ( G DProd  ( S  |`  (
I  \  { x } ) ) ) )  =  {  .0.  } )
11512, 13, 15, 34dpjcntz 16665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( S `  x
)  C_  ( (Cntz `  G ) `  ( G DProd  ( S  |`  (
I  \  { x } ) ) ) ) )
116109, 110, 3, 34, 111, 113, 114, 115, 28pj1rid 16312 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I
)  /\  A  e.  ( G DProd  ( S  |`  ( I  \  {
x } ) ) ) )  ->  (
( ( S `  x ) ( proj1 `  G )
( G DProd  ( S  |`  ( I  \  {
x } ) ) ) ) `  A
)  =  .0.  )
11727, 116sylanl2 651 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp 
.0.  ) ) )  /\  A  e.  ( G DProd  ( S  |`  ( I  \  { x } ) ) ) )  ->  ( (
( S `  x
) ( proj1 `  G ) ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ) `  A )  =  .0.  )
118108, 117mpdan 668 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( ( ( S `
 x ) (
proj1 `  G
) ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ) `  A )  =  .0.  )
11931, 118eqtrd 2492 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  ( I  \  ( f supp  .0.  ) ) )  -> 
( ( P `  x ) `  A
)  =  .0.  )
12019adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  I  e.  _V )
121119, 120suppss2 6826 . . . . 5  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) supp 
.0.  )  C_  (
f supp  .0.  ) )
122 fsuppsssupp 7740 . . . . 5  |-  ( ( ( ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  e. 
_V  /\  Fun  ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) )  /\  ( f finSupp  .0.  /\  ( ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) supp 
.0.  )  C_  (
f supp  .0.  ) )
)  ->  ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) finSupp  .0.  )
12322, 24, 26, 121, 122syl22anc 1220 . . . 4  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( x  e.  I  |->  ( ( P `
 x ) `  A ) ) finSupp  .0.  )
1244, 10, 11, 18, 123dprdwd 16609 . . 3  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  e.  W )
125 simprr 756 . . . 4  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  A  =  ( G  gsumg  f ) )
12640feqmptd 5846 . . . . . 6  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  f  =  ( x  e.  I  |->  ( f `  x ) ) )
127 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  A  =  ( G 
gsumg  f ) )
12812, 35, 363syl 20 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  G  e.  Mnd )
1294, 12, 13, 42dprdffsupp 16612 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  f finSupp  .0.  )
130 disjdif 3852 . . . . . . . . . . . . 13  |-  ( { x }  i^i  (
I  \  { x } ) )  =  (/)
131130a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( { x }  i^i  ( I  \  {
x } ) )  =  (/) )
132 undif2 3856 . . . . . . . . . . . . 13  |-  ( { x }  u.  (
I  \  { x } ) )  =  ( { x }  u.  I )
13315snssd 4119 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  { x }  C_  I )
134 ssequn1 3627 . . . . . . . . . . . . . 14  |-  ( { x }  C_  I  <->  ( { x }  u.  I )  =  I )
135133, 134sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( { x }  u.  I )  =  I )
136132, 135syl5req 2505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  I  =  ( { x }  u.  (
I  \  { x } ) ) )
13733, 3, 109, 34, 128, 94, 69, 43, 129, 131, 136gsumzsplit 16531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G  gsumg  f )  =  ( ( G  gsumg  ( f  |`  { x } ) ) ( +g  `  G ) ( G  gsumg  ( f  |`  (
I  \  { x } ) ) ) ) )
13869, 133feqresmpt 5847 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f  |`  { x } )  =  ( k  e.  { x }  |->  ( f `  k ) ) )
139138oveq2d 6209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G  gsumg  ( f  |`  { x } ) )  =  ( G  gsumg  ( k  e.  {
x }  |->  ( f `
 k ) ) ) )
14069, 15ffvelrnd 5946 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f `  x
)  e.  ( Base `  G ) )
141 fveq2 5792 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
f `  k )  =  ( f `  x ) )
14233, 141gsumsn 16563 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  x  e.  I  /\  ( f `  x
)  e.  ( Base `  G ) )  -> 
( G  gsumg  ( k  e.  {
x }  |->  ( f `
 k ) ) )  =  ( f `
 x ) )
143128, 15, 140, 142syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G  gsumg  ( k  e.  {
x }  |->  ( f `
 k ) ) )  =  ( f `
 x ) )
144139, 143eqtrd 2492 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G  gsumg  ( f  |`  { x } ) )  =  ( f `  x
) )
145144oveq1d 6208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( G  gsumg  ( f  |`  { x } ) ) ( +g  `  G
) ( G  gsumg  ( f  |`  ( I  \  {
x } ) ) ) )  =  ( ( f `  x
) ( +g  `  G
) ( G  gsumg  ( f  |`  ( I  \  {
x } ) ) ) ) )
146127, 137, 1453eqtrd 2496 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  A  =  ( ( f `  x ) ( +g  `  G
) ( G  gsumg  ( f  |`  ( I  \  {
x } ) ) ) ) )
14712, 13, 15, 110dpjlsm 16667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( G DProd  S )  =  ( ( S `
 x ) (
LSSum `  G ) ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ) )
14817, 147eleqtrd 2541 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  A  e.  ( ( S `  x ) ( LSSum `  G )
( G DProd  ( S  |`  ( I  \  {
x } ) ) ) ) )
1494, 10, 11, 25dprdfcl 16611 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( f `  x
)  e.  ( S `
 x ) )
150109, 110, 3, 34, 111, 113, 114, 115, 28, 148, 149, 106pj1eq 16310 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( A  =  ( ( f `  x
) ( +g  `  G
) ( G  gsumg  ( f  |`  ( I  \  {
x } ) ) ) )  <->  ( (
( ( S `  x ) ( proj1 `  G )
( G DProd  ( S  |`  ( I  \  {
x } ) ) ) ) `  A
)  =  ( f `
 x )  /\  ( ( ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ( proj1 `  G ) ( S `
 x ) ) `
 A )  =  ( G  gsumg  ( f  |`  (
I  \  { x } ) ) ) ) ) )
151146, 150mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( ( ( S `  x ) ( proj1 `  G ) ( G DProd 
( S  |`  (
I  \  { x } ) ) ) ) `  A )  =  ( f `  x )  /\  (
( ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ( proj1 `  G )
( S `  x
) ) `  A
)  =  ( G 
gsumg  ( f  |`  (
I  \  { x } ) ) ) ) )
152151simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( ( S `
 x ) (
proj1 `  G
) ( G DProd  ( S  |`  ( I  \  { x } ) ) ) ) `  A )  =  ( f `  x ) )
15330, 152eqtrd 2492 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  /\  x  e.  I )  ->  ( ( P `  x ) `  A
)  =  ( f `
 x ) )
154153mpteq2dva 4479 . . . . . 6  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  =  ( x  e.  I  |->  ( f `  x
) ) )
155126, 154eqtr4d 2495 . . . . 5  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  f  =  ( x  e.  I  |->  ( ( P `  x
) `  A )
) )
156155oveq2d 6209 . . . 4  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( G  gsumg  f )  =  ( G  gsumg  ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) ) )
157125, 156eqtrd 2492 . . 3  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  A  =  ( G  gsumg  ( x  e.  I  |->  ( ( P `  x ) `  A
) ) ) )
158124, 157jca 532 . 2  |-  ( (
ph  /\  ( f  e.  W  /\  A  =  ( G  gsumg  f ) ) )  ->  ( ( x  e.  I  |->  ( ( P `  x ) `
 A ) )  e.  W  /\  A  =  ( G  gsumg  ( x  e.  I  |->  ( ( P `  x ) `
 A ) ) ) ) )
1598, 158rexlimddv 2944 1  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( P `
 x ) `  A ) )  e.  W  /\  A  =  ( G  gsumg  ( x  e.  I  |->  ( ( P `  x ) `  A
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2796   {crab 2799   _Vcvv 3071    \ cdif 3426    u. cun 3427    i^i cin 3428    C_ wss 3429   (/)c0 3738   {csn 3978   class class class wbr 4393    |-> cmpt 4451   dom cdm 4941   ran crn 4942    |` cres 4943   Fun wfun 5513   -->wf 5515   ` cfv 5519  (class class class)co 6193   supp csupp 6793   X_cixp 7366   finSupp cfsupp 7724   Basecbs 14285   +g cplusg 14349   0gc0g 14489    gsumg cgsu 14490   Mndcmnd 15520   Grpcgrp 15521  SubGrpcsubg 15786  Cntzccntz 15944   LSSumclsm 16246   proj1cpj1 16247   DProd cdprd 16589  dProjcdpj 16590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-tpos 6848  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-oi 7828  df-card 8213  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-fzo 11659  df-seq 11917  df-hash 12214  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-0g 14491  df-gsum 14492  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-mhm 15575  df-submnd 15576  df-grp 15656  df-minusg 15657  df-sbg 15658  df-mulg 15659  df-subg 15789  df-ghm 15856  df-gim 15898  df-cntz 15946  df-oppg 15972  df-lsm 16248  df-pj1 16249  df-cmn 16392  df-dprd 16591  df-dpj 16592
This theorem is referenced by:  dpjeq  16672  dpjid  16673
  Copyright terms: Public domain W3C validator